Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. 1992

A B Kotlyar, and V D Sled, and A D Vinogradov
Department of Biochemistry, School of Biology, Moscow State University, U.S.S.R.

Slow active/inactive transition of the membrane-bound mitochondrial NADH-ubiquinone reductase (Kotlyar, A.B. and Vinogradov, A.D. (1990) Biochim. Biophys. Acta 1019, 151-158) is sensitive to Ca2+ and other divalent cations. Millimolar concentrations of Ca2+ drastically reduce the rate of the turnover-dependent activation of NADH-ubiquinone reductase. When NADH oxidase, the rotenone-sensitive NADH-ubiquinone reductase or the succinate-supported delta mu H+-dependent NAD+ reduction were initiated by the deactivated enzyme preparations all the three activities were strongly inhibited by Ca2+; no sensitivity of these reactions to Ca2+ was observed when the assays were started by the activated enzyme preparations. The affinity of the deactivated enzyme to polyvalent cations was in the following order: Ni2+ greater than Co2+ greater than La3+ greater than Mn2+ greater than Ca2+ approximately Mg2+ greater than Ba2+. Monovalent metal cations had no effect on the slow turnover-dependent enzyme activation. The apparent affinity of the deactivated enzyme to Ca2+ was strongly pH-dependent. The KCa2+ values of 5.7 mM and 0.6 mM at pH 7.5 and 8.5 were determined from the presteady-state kinetics parameters. The spontaneous temperature-dependent deactivation of the enzyme was insensitive to Ca2+. Ca2+ increases the reactivity of the enzyme sulfhydryl group in the deactivated preparations towards N-ethylmaleimide. This effect was also used to quantitate Ca2+ affinity for the enzyme. The KCa2+ values of 1.2 mM and 0.4 mM at pH 8.0 and 9.0, respectively, were determined. The data obtained suggest that Ca2+ content in the mitochondrial matrix may play an important role in the control of NADH oxidation by the respiratory chain.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

A B Kotlyar, and V D Sled, and A D Vinogradov
August 1990, Biochimica et biophysica acta,
A B Kotlyar, and V D Sled, and A D Vinogradov
April 1997, Biochimica et biophysica acta,
A B Kotlyar, and V D Sled, and A D Vinogradov
March 2001, The Journal of biological chemistry,
A B Kotlyar, and V D Sled, and A D Vinogradov
August 1986, Biochemical and biophysical research communications,
A B Kotlyar, and V D Sled, and A D Vinogradov
February 1999, Biochemistry. Biokhimiia,
A B Kotlyar, and V D Sled, and A D Vinogradov
May 2007, Biochemistry,
A B Kotlyar, and V D Sled, and A D Vinogradov
June 1989, Biochemical pharmacology,
Copied contents to your clipboard!