An IR study of protonation changes associated with heme-heme electron transfer in bovine cytochrome c oxidase. 2007

Masayo Iwaki, and Peter R Rich
Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.

IR changes caused by photolysis of CO from the mixed valence form of bovine cytochrome c oxidase have been investigated over the pH/pD range 6-9.8. Band assignments were based on effects of H2O/D2O exchange and by comparisons with published IR data and crystallographic data. Changes arise both from CO photolysis and from subsequent reversed electron transfer from heme a3 to heme a. This reversed electron transfer is known to have pH-independent and, above pH 8, pH-dependent components. The pH-independent component is associated with a trough around the 1742 cm(-1) band attributable to one or more protonated carboxylic acids. Its peak position, but not extent, is pH-dependent, indicative of a titratable group with a pK of 8.2 whose acid form causes increased hydrogen bonding to the IR-detectable carboxylic group. A different protonatable group with pK above 9 controls the extent of the pH-dependent component. This phase is associated with perturbation of an arginine guanidinium that is most clearly observed as a trough at 1592 cm(-1) after H/D exchange. It is suggested that this group, probably Arg-438 that is in close contact with propionate groups of both hemes and already proposed to be of functional significance, lowers the energy of the transient charge-uncompensated electron-transfer intermediate by changing the charge distribution in response to heme-heme electron transfer. No other IR signature of a titratable group that controls the extent of the pH-dependent phase is present, and it most likely arises from a nonphysiological deprotonation of the proximal water ligand of ferric heme a3 at high pH that has been reported to exhibit a similar pK.

UI MeSH Term Description Entries
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate

Related Publications

Masayo Iwaki, and Peter R Rich
August 2002, Biochemistry,
Masayo Iwaki, and Peter R Rich
January 1988, Annals of the New York Academy of Sciences,
Masayo Iwaki, and Peter R Rich
January 1995, Biochemistry,
Masayo Iwaki, and Peter R Rich
October 2011, Biochimica et biophysica acta,
Masayo Iwaki, and Peter R Rich
April 2002, Archives of biochemistry and biophysics,
Masayo Iwaki, and Peter R Rich
May 1996, Biochemistry,
Copied contents to your clipboard!