Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. 1992

J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
Division of Gastrointestinal and Liver Diseases, School of Medicine, University of Southern California, Los Angeles 90033.

We have characterized the transport of GSH and the mechanism for impaired GSH transport in mutant Eisai hyperbilirubinemic rats (EHBR) using isolated canalicular membrane-enriched vesicles (cLPM). In control animals, the transport of GSH is an electrogenic process and is trans-stimulated by preloading the vesicles with GSH and is not enhanced in the presence of ATP. GSH transport in cLPM is saturable with a single component having a Km of approximately 16 mM and a Vmax of 6.7 nmol/mg/15 s. EHBR is a Sprague-Dawley rat with hyperbilirubinemia due to impaired bile secretion of organic anions by the ATP-dependent organic anion/GSH-conjugate transporter. In cLPM from EHBR we confirmed the defective stimulation by ATP of the transport of LTC4 and GSSG. In the mutant cLPM, the characteristics and kinetics of GSH transport were the same as in the controls. 2,4-(dinitrophenyl)-glutathione (DNP-GSH), which is a substrate for the ATP-dependent canalicular organic anion carrier, in the absence of ATP, cis-inhibited the transport of GSH into cLPM vesicles; however, when the vesicles were preloaded with DNP-GSH, there was a dose-dependent trans-stimulation of GSH transport. In contrast, in the presence of ATP, DNP-GSH enhanced GSH transport in cLPM vesicles; at 0.25 mM DNP-GSH, a concentration which did not cis-inhibit GSH, addition of ATP resulted in accelerated GSH transport; at 1.0 mM DNP-GSH, cis-inhibition was completely reversed by the addition of ATP despite a negligible fall in the medium DNP-GSH. Interestingly, sulfobromophthalein-glutathione (BSP-GSH) neither cis-inhibited nor trans-stimulated GSH transport in cLPM. This contrasts with bLPM where BSP-GSH interacts with the GSH carrier. Therefore, GSH is transported into bile by a multispecific low affinity electrogenic carrier which is distinct from the multispecific high affinity ATP-driven organic anion transporter. Although both carriers have overlapping specificities, BSP-GSH and GSH are uniquely specific for only one of the carriers. The near absence of GSH in the bile of mutant rats can be best explained as a secondary defect due to cis-inhibition from retained substrates for the defective carrier and/or loss of trans-stimulation by these same substrates which normally are concentratively transported into the bile. Other possibilities such as change in GSH carrier activity upon isolation or loss of a negative protein regulator during membrane isolation, although theoretical alternatives are less easily reconciled with the defect in the ATP-driven organic anion transporter.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006932 Hyperbilirubinemia A condition characterized by an abnormal increase of BILIRUBIN in the blood, which may result in JAUNDICE. Bilirubin, a breakdown product of HEME, is normally excreted in the BILE or further catabolized before excretion in the urine. Bilirubinemia,Bilirubinemias,Hyperbilirubinemias
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids

Related Publications

J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
October 1996, Biopharmaceutics & drug disposition,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
July 1996, Hepatology (Baltimore, Md.),
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
June 1993, The Journal of pharmacology and experimental therapeutics,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
November 1996, Biopharmaceutics & drug disposition,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
January 1996, Biological trace element research,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
February 1998, The Journal of pharmacology and experimental therapeutics,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
January 1995, Antimicrobial agents and chemotherapy,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
March 1999, Pancreas,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
March 1997, Digestive diseases and sciences,
J C Fernández-Checa, and H Takikawa, and T Horie, and M Ookhtens, and N Kaplowitz
January 1993, Life sciences,
Copied contents to your clipboard!