Inhibition of tolerance to spinal morphine antinociception by low doses of opioid receptor antagonists. 2007

Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6.

Ultra-low doses of opioid receptor antagonists inhibit development of chronic spinal morphine tolerance. As this phenomenon mechanistically resembles acute tolerance, the present study examined actions of opioid receptor antagonists on acute spinal morphine tolerance. In adult rats, administration of three intrathecal injections of morphine (15 microg) at 90 min intervals produced a significant decline of the antinociceptive effect and loss of agonist potency in both the tail-flick and paw-pressure tests. These reduced responses, indicative of acute tolerance, were blocked by co-injection of morphine (15 microg) with naltrexone (NTX, 0.05 ng), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTAP, 0.001 ng), naltrindole (0.06 ng), or nor-binaltorphimine (0.1 ng). Repeated injections of CTAP, naltrindole, or nor-binaltorphimine without morphine elicited a delayed weak antinociceptive response which was blocked by a high dose of naltrexone (2 microg). In another set of experiments, administration of low dose spinal (0.05 ng) or systemic (0.01 microg/kg) morphine produced a sustained thermal hyperalgesia. This response was blocked by opioid receptor antagonists at doses inhibiting development of acute morphine tolerance. Lastly, an acute spinal injection of morphine (15 microg) with naltrexone (0.05 ng) produced a sustained analgesic response; this was antagonized by adenosine receptor antagonist, 8-phenyltheophylline (3 microg). The results show that ultra-low doses of opioid receptor antagonists block acute tolerance to morphine. This effect may result from blockade of opioid excitatory effects that produce a latent hyperalgesia that then contributes to induction of tolerance. The sustained antinociception produced by combination of morphine with an opioid receptor antagonist shows dependency on the adenosine receptor activity.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia

Related Publications

Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
July 2007, British journal of pharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
April 1992, European journal of pharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
October 1994, Naunyn-Schmiedeberg's archives of pharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
August 2006, Neuroscience,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
October 2005, Pain,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
August 1982, The Journal of pharmacy and pharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
March 1999, European journal of pharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
January 2017, Journal of ethnopharmacology,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
July 2018, Neuroreport,
Benjamin McNaull, and Tuan Trang, and Maaja Sutak, and Khem Jhamandas
August 1996, Brain research,
Copied contents to your clipboard!