Molecular cloning and nucleotide sequence of a pectin lyase gene from Pseudomonas marginalis N6301. 1992

N Nikaidou, and Y Kamio, and K Izaki
Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University, Sendai, Japan.

A pectin lyase (PNL;EC4.2.2.10) gene of Pseudomonas marginalis N6301 was cloned and expressed in Escherichia coli. We purified PNL from P. marginalis N6301 and determined N-terminal 33 amino acids sequence. From this sequence, we synthesized two oligonucleotide probes. From the analysis of Southern hybridization, 2. 1kb EcoRI-SmaI fragment from the chromosomal DNA of P. marginalis was found to hybridize with oligonucleotide probes. Then, we cloned the fragment into pUC119 vector and transformed into E. coli DH5 alpha. A plasmid thus obtained was designated as pPNL6301. E. coli DH5 alpha harboring pPNL6301 expressed PNL activity. The nucleotide sequence of pn1 gene in the plasmid pPNL6301 encoding PNL from P. marginalis N6301 was determined. The structural gene of pn1 consisted of 936 base pairs. An open reading frame that encodes a 34,103 dalton polypeptide composed of 312 amino acids was assigned. The molecular weight of the polypeptide predicted from the amino acid composition was close to that of PNL of P. marginalis N6301 determined. The nucleotide sequence of the 5'-flanking region of pn1 gene showed the presence of the consensus sequence of LexA binding site, Pribnow box and ribosome binding site as found in Escherichia coli. The amino acid sequence homology of PNLs and nucleotide sequence homology of pn1 gene between P. marginalis N6301 and E. carotovora Er were 60.8% and 57.2%, respectively.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011133 Polysaccharide-Lyases A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2. Polysaccharide Lyase,Polysaccharide-Lyase,Lyase, Polysaccharide,Polysaccharide Lyases
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004885 Erwinia A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms are associated with plants as pathogens, saprophytes, or as constituents of the epiphytic flora.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

N Nikaidou, and Y Kamio, and K Izaki
November 1986, Biochemical and biophysical research communications,
N Nikaidou, and Y Kamio, and K Izaki
October 1998, DNA and cell biology,
N Nikaidou, and Y Kamio, and K Izaki
April 2003, Biotechnology and applied biochemistry,
N Nikaidou, and Y Kamio, and K Izaki
March 1988, Molecular microbiology,
N Nikaidou, and Y Kamio, and K Izaki
April 1992, Applied and environmental microbiology,
N Nikaidou, and Y Kamio, and K Izaki
January 1989, Journal of general microbiology,
N Nikaidou, and Y Kamio, and K Izaki
September 1991, Agricultural and biological chemistry,
N Nikaidou, and Y Kamio, and K Izaki
July 1988, The Journal of biological chemistry,
Copied contents to your clipboard!