Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. 2007

Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010, USA.

Secretory immunoglobulin A (sIgA) plays a crucial role in mucosal surface defense. We tested the hypothesis that colonic sIgA secretion is under enteric neural control. Immunohistochemistry of the porcine distal colonic mucosa revealed presumptive cholinergic and adrenergic nerve fibers apposed to secretory component (SC)-positive crypt epithelial cells and neighboring IgA(+) plasmacytes. The cholinomimetic drug carbamylcholine elicited rapid, atropine-sensitive IgA secretion into the luminal fluid bathing mucosal explants mounted in Ussing chambers. The adrenergic receptor agonist norepinephrine also increased IgA secretion, an action inhibited by phentolamine. These effects were independent of agonist-induced anion secretion. In Western blots of luminal fluid, both agonists increased the density of protein bands co-immunoreactive for IgA and SC. Mucosal exposure to enterohemorrhagic Escherichia coli did not affect IgA secretion, and carbamylcholine treatment did not affect mucosal adherence of this enteropathogen. Acetylcholine and norepinephrine, acting respectively through muscarinic cholinergic and alpha-adrenergic receptors in the colonic mucosa, stimulate sIgA secretion and may enhance mucosal defense in vivo.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012635 Secretory Component The extracellular moiety of the POLYMERIC IMMUNOGLOBULIN RECEPTOR found alone or complexed with IGA or IGM, in a variety of external secretions (tears, bile, colostrum.) Secretory component is derived by proteolytic cleavage of the receptor during transcytosis. When immunoglobulins IgA and IgM are bound to the receptor, during their transcytosis secretory component becomes covalently attached to them generating SECRETORY IMMUNOGLOBULIN A or secretory IMMUNOGLOBULIN M. Secretory Piece

Related Publications

Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
January 1993, Life sciences,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
December 1974, British journal of experimental pathology,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
February 1999, Gastroenterology,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
September 1991, The American journal of physiology,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
May 1986, Clinical & experimental optometry,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
January 2012, Frontiers in neuroscience,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
November 2000, American journal of physiology. Gastrointestinal and liver physiology,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
November 1994, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
January 1983, Journal of the autonomic nervous system,
Lisa D Schmidt, and Yonghong Xie, and Mark Lyte, and Lucy Vulchanova, and David R Brown
April 1992, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!