Role of nuclear factor kappa B (NF-kappaB) in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague-Dawley rats. 2007

Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA.

Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptor-G-protein uncoupling via mechanisms involving protein kinase C (PKC) and G-protein-coupled receptor kinase 2 (GRK 2) in the primary cultures of renal PT of Sprague-Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-kappaB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-kappaB in oxidative stress-induced defective renal D1 receptor-G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H(2)O(2), 50 microM/20 min) induced the nuclear translocation of NF-kappaB, increased PKC activity, and triggered the translocation of GRK 2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pretreatment with pyrrolidine dithiocarbamate (PDTC, 25 microM/10 min), an NF-kappaB inhibitor, blocked the H(2)O(2)-induced nuclear translocation of NF-kappaB, increase in PKC activity, and GRK 2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, K-ATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-kappaB in the renal proximal tubules, which contributes to defective D1 receptor-G-protein coupling and function via mechanisms involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors.

UI MeSH Term Description Entries
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D013859 Thiocarbamates Carbamates in which the -CO- group has been replaced by a -CS- group. Thiocarbamate

Related Publications

Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
February 2008, Hypertension (Dallas, Tex. : 1979),
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
May 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
September 2006, Kidney international,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
December 2022, Biochemical and biophysical research communications,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
April 2001, Journal of neurochemistry,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
November 1999, Hypertension (Dallas, Tex. : 1979),
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
May 2007, Journal of the American Society of Nephrology : JASN,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
January 2010, Journal of Ayub Medical College, Abbottabad : JAMC,
Riham Zein Fardoun, and Mohammad Asghar, and Mustafa Lokhandwala
July 2005, Chinese medical journal,
Copied contents to your clipboard!