The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. 2007

Brett Geissler, and Daisuke Shiomi, and William Margolin
Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in the assembly of the divisome, a protein machine required for cell division. Although the biochemical functions of most divisome proteins are unknown, several, including ZipA, FtsA and FtsK, have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane, and that it is active. As shown previously, a single amino acid change in FtsA, R286W, also called FtsA*, bypasses the requirement for either ZipA or FtsK in cell division. In this study, the properties of FtsA* were investigated further, with the eventual goal of understanding the molecular mechanism behind the bypass. Compared to wild-type FtsA, the presence of FtsA* resulted in a modest but significant decrease in the mean length of cells in the population, accelerated the reassembly of Z rings, and suppressed the cell-division block caused by excessively high levels of FtsZ. These effects were not mediated by Z-ring remodelling, because FtsA* did not alter the kinetics of FtsZ turnover within the Z ring, as measured by fluorescence recovery after photobleaching. FtsA* was also unable to permit normal cell division at below normal levels of FtsZ, or after thermoinactivation of ftsZ84(ts). However, turnover of FtsA* in the ring was somewhat faster than that of wild-type FtsA, and overexpressed FtsA* did not inhibit cell division as efficiently as wild-type FtsA. Finally, FtsA* interacted more strongly with FtsZ compared with FtsA in a yeast two-hybrid system. These results suggest that FtsA* interacts with FtsZ in a markedly different way compared with FtsA.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins
D020798 Two-Hybrid System Techniques Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions. One-Hybrid System Techniques,Reverse One-Hybrid System Techniques,Reverse Two-Hybrid System Techniques,Three-Hybrid System Techniques,Yeast Two-Hybrid Assay,Yeast Two-Hybrid System Techniques,One-Hybrid System Technics,Reverse Three-Hybrid System Techniques,Three-Hybrid System Technics,Tri-Hybrid System Techniques,Two-Hybrid Assay,Two-Hybrid Method,Two-Hybrid System Technics,Yeast One-Hybrid System Techniques,Yeast Three-Hybrid Assay,Yeast Three-Hybrid System,Yeast Three-Hybrid System Techniques,Yeast Two-Hybrid System,n-Hybrid System Techniques,Assay, Two-Hybrid,Assay, Yeast Three-Hybrid,Assay, Yeast Two-Hybrid,Assays, Two-Hybrid,Assays, Yeast Three-Hybrid,Assays, Yeast Two-Hybrid,Method, Two-Hybrid,Methods, Two-Hybrid,One Hybrid System Technics,One Hybrid System Techniques,One-Hybrid System Technic,One-Hybrid System Technique,Reverse One Hybrid System Techniques,Reverse Three Hybrid System Techniques,Reverse Two Hybrid System Techniques,System Technique, n-Hybrid,System Techniques, n-Hybrid,System, Yeast Three-Hybrid,System, Yeast Two-Hybrid,Systems, Yeast Three-Hybrid,Systems, Yeast Two-Hybrid,Technic, One-Hybrid System,Technic, Three-Hybrid System,Technic, Two-Hybrid System,Technics, One-Hybrid System,Technics, Three-Hybrid System,Technics, Two-Hybrid System,Technique, One-Hybrid System,Technique, Three-Hybrid System,Technique, Tri-Hybrid System,Technique, Two-Hybrid System,Technique, n-Hybrid System,Techniques, One-Hybrid System,Techniques, Three-Hybrid System,Techniques, Tri-Hybrid System,Techniques, Two-Hybrid System,Techniques, n-Hybrid System,Three Hybrid System Technics,Three Hybrid System Techniques,Three-Hybrid Assay, Yeast,Three-Hybrid Assays, Yeast,Three-Hybrid System Technic,Three-Hybrid System Technique,Three-Hybrid System, Yeast,Three-Hybrid Systems, Yeast,Tri Hybrid System Techniques,Tri-Hybrid System Technique,Two Hybrid Assay,Two Hybrid Method,Two Hybrid System Technics,Two Hybrid System Techniques,Two-Hybrid Assay, Yeast,Two-Hybrid Assays,Two-Hybrid Assays, Yeast,Two-Hybrid Methods,Two-Hybrid System Technic,Two-Hybrid System Technique,Two-Hybrid System, Yeast,Two-Hybrid Systems, Yeast,Yeast One Hybrid System Techniques,Yeast Three Hybrid Assay,Yeast Three Hybrid System,Yeast Three Hybrid System Techniques,Yeast Three-Hybrid Assays,Yeast Three-Hybrid Systems,Yeast Two Hybrid Assay,Yeast Two Hybrid System,Yeast Two Hybrid System Techniques,Yeast Two-Hybrid Assays,Yeast Two-Hybrid Systems,n Hybrid System Techniques,n-Hybrid System Technique
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Brett Geissler, and Daisuke Shiomi, and William Margolin
February 2018, Molecular microbiology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
August 2003, Journal of bacteriology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
September 2005, Journal of bacteriology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
December 2011, Physical biology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
January 1999, Journal of bacteriology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
April 2003, Proceedings of the National Academy of Sciences of the United States of America,
Brett Geissler, and Daisuke Shiomi, and William Margolin
January 1999, Journal of bacteriology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
January 2017, Frontiers in microbiology,
Brett Geissler, and Daisuke Shiomi, and William Margolin
February 2019, Journal of bacteriology,
Copied contents to your clipboard!