The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments. 1975

L M Jones, and R H Michell

The possibility that Ca2+ ions are involved in the control of the increased phosphatidylinositol turnover which is provoked by alpha-adrenergic or muscarinic cholinergic stimulation of rat parotid-gland fragments has been investigated. Both types of stimulation provoked phosphatidylinositol breakdown, which was detected either chemically or radiochemically, and provoked a compensatory synthesis of the lipid, detected as an increased rate of incorporation of 32Pi into phosphatidylinositol. Acetylcholine had little effect on the incorporation of labelled glycerol, whereas adrenaline stimulated it significantly, but to a much lower extent than 32P incorporation: this suggests that the response to acetylcholine was entirely accounted for by renewal of the phosphorylinositol head-group of the lipid, but that some synthesis de novo was involved in the response to adrenaline. The responses to both types of stimulation, whether measured as phosphatidylinositol breakdown or as phosphatidylinositol labelling, occurred equally well in incubation media containing 2.5 mm-Ca2+ or 0.2 mm-EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid]. Incubation with a bivalent cation ionophore (A23187) led to a small and more variable increase in phosphatidylinositol labelling with 32Pi, which occurred whether or not Ca2+ was available in the extracellular medium: this was not accompanied by significant phosphatidylinositol breakdown. Cinchocaine, a local anaesthetic, produced parallel increases in the incorporation of Pi and glycerol into phosphatidylinositol. This is compatible with its known ability to inhibit phosphatidate phosphohydrolase (EC 3.1.3.4) and increase phosphatidylinositol synthesis de novo in other cells. These results indicate that the phosphatidylinositol turnover evoked by alpha-adrenergic or muscarinic cholinergic stimuli in rat parotid gland probably does not depend on an influx of Ca2+ into the cells in response to stimulation. This is in marked contrast with the K+ efflux from this tissue, which is controlled by the same receptors, but is strictly dependent on the presence of extracellular Ca2+. The Ca2+-independence of stimulated phosphatidylinositol metabolism may mean that it is controlled through a mode of receptor function different from that which controls other cell responses. Alternatively, it can be interpreted as indicating that stimulated phosphatidylinositol breakdown is intimately involved in the mechanisms of action of alpha-adrenergic and muscarinic cholinergic receptor systems.

UI MeSH Term Description Entries
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003992 Dibucaine A local anesthetic of the amide type now generally used for surface anesthesia. It is one of the most potent and toxic of the long-acting local anesthetics and its parenteral use is restricted to spinal anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1006) Cincain,Cinchocaine,Nupercainal,Nupercaine,Sovcaine
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L M Jones, and R H Michell
September 1986, Japanese journal of pharmacology,
L M Jones, and R H Michell
May 1978, The Journal of pharmacology and experimental therapeutics,
L M Jones, and R H Michell
January 1977, Biochemical Society transactions,
Copied contents to your clipboard!