2-Methoxyethanol metabolism in pregnant CD-1 mice and embryos. 1992

C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709.

Upon oxidation to 2-methoxyacetic acid (2-MAA), 2-methoxyethanol (2-ME) causes malformations in all animal species that have been examined. Commonly, 2-MAA is thought to be the proximate toxicant. However, our previous studies with [1,2-14C]2-ME and the present data obtained with [1-14C]2-MAA, [2-14C]2-ME and [methoxy-14C]2-ME revealed that metabolism beyond 2-MAA occurs. Regardless of the 14C position, dams exhaled approximately 5% of the radioactivity administered as a single teratogenic oral dose (3.3 mmol/kg on Gestation Day [gd] 11) as 14CO2. With all isotopic variants urine contained 70-80% of the dose within 24 hr after administration and 13-18% in the next 24 hr. Three labeled products were resolved using HPLC: an unidentified Peak A (12-18% of dose), 2-MAA (approximately 50%), and the glycine conjugate of 2-MAA (approximately 25%). Short-term (4 hr) whole embryo culture on gd 11 with 3 mM 2-MAA and a tracer dose of [1-14C]2-MAA, [2-14C]2-MAA, or [methoxy-14C]2-MAA showed that 14CO2 evolved from the former two substrates, while there was none detectable from the latter. The data indicate that dams metabolized [methoxy-14]2-MAA to 14CO2, while embryos apparently did not. The production of labeled CO2 from [2-14C]2-ME suggests that 2-methoxyacetyl approximately CoA (the precursor for amino acid conjugation with glycine) entered into the tricarboxylic acid (TCA) cycle. This interpretation is supported by the inhibition of 14CO2 evolution elicited by fluoroacetate (0.1 or 1.0 mM) and sodium acetate (5 mM). It is not yet clear whether entry of 2-methoxyacetyl approximately CoA as a "false substrate" in the TCA cycle is of significance for the embryotoxic effects of 2-ME/2MAA.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005026 Ethylene Glycols An ethylene compound with two hydroxy groups (-OH) located on adjacent carbons. They are viscous and colorless liquids. Some are used as anesthetics or hypnotics. However, the class is best known for their use as a coolant or antifreeze. Dihydroxyethanes,Ethanediols,Glycols, Ethylene
D005260 Female Females

Related Publications

C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
May 1992, Toxicology and applied pharmacology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
March 1994, Teratology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
December 1998, Teratology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
January 1985, Canadian journal of comparative medicine : Revue canadienne de medecine comparee,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
April 1991, Fundamental and applied toxicology : official journal of the Society of Toxicology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
July 1985, Toxicology and applied pharmacology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
August 1993, Mutation research,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
April 1988, Toxicology and applied pharmacology,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
July 2022, Environmental advances,
C A Mebus, and D O Clarke, and D B Stedman, and F Welsch
August 1993, Toxicology and applied pharmacology,
Copied contents to your clipboard!