Calcium signalling in single growth hormone-releasing factor-responsive pituitary cells. 1992

L Cuttler, and S R Glaum, and B A Collins, and R J Miller
Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106.

The release of pituitary GH appears to be critically dependent on alterations in the free intracellular Ca2+ concentration ([Ca2+]i). However, little is known about the nature of Ca2+ signalling within normal pituitary cells. We, therefore, examined [Ca2+]i patterns in individual cultured pituicytes of adult male rats under basal conditions and in response to GH regulatory agents, using the calcium-sensitive dye fura-2 together with digital imaging microscopy. Perfusion of cultured anterior pituitary cells with GH-releasing factor (GHRF) resulted in a marked increase in [Ca2+]i in specific pituitary cells. These cells did not respond to other hypothalamic secretagogues (GnRH, TRH, or CRF), and there was no evidence of desensitization on repetitive administration of GHRF. Somatotrophs (n = 134) exhibited spontaneous oscillations of [Ca2+]i in the basal state, with considerable heterogeneity of oscillatory patterns among cells. After application of a near-maximal stimulatory dose of GHRF (1 nM), there was a striking 2.2-fold increase in the amplitude of [Ca2+]i oscillations and only a modest increase in their frequency. Forskolin (1 microM) augmented somatotroph [Ca2+]i in patterns similar to those of GHRF. Somatostatin (10 nM) abolished the [Ca2+]i response to GHRF (n = 26); this reflected a marked reduction in the amplitude of [Ca2+]i oscillations and a slight reduction in their frequency. Ca(2+)-free medium or the Ca2+ channel antagonist nimodipine (0.1-1 microM) suppressed the Ca2+ stimulatory effect of GHRF. Conversely, the Ca2+ channel agonist BAY K8644 (1 microM) strikingly augmented the GHRF-induced rise in [Ca2+]i, with a major stimulatory effect on the amplitude of [Ca2+]i oscillations and no observed effect on their frequency. In summary, GHRF and other hypothalamic secretagogues increase [Ca2+]i in pituitary cells in a highly specific manner, consistent with the known specificity of their effects on hormone release. Somatotrophs exhibit spontaneous rhythmic oscillation of [Ca2+]i in the basal state. Known regulators of GH release markedly alter the [Ca2+]i oscillatory pattern in characteristic manners, exerting predominant effects on the amplitude of [Ca2+]i pulses and lesser effects on their frequency. These striking effects of GH regulatory agents on pituitary Ca2+ signalling are consistent with the concept that modulation of [Ca2+]i is a critical mediator of somatotroph function.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

L Cuttler, and S R Glaum, and B A Collins, and R J Miller
May 1983, Lancet (London, England),
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
February 1992, The Journal of physiology,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
January 1988, Acta paediatrica Japonica : Overseas edition,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
October 1991, Endocrinology,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
March 1984, Proceedings of the National Academy of Sciences of the United States of America,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
April 1985, Endocrinology,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
October 1987, Domestic animal endocrinology,
L Cuttler, and S R Glaum, and B A Collins, and R J Miller
January 1989, Brain research,
Copied contents to your clipboard!