Threshold position control of arm movement with anticipatory increase in grip force. 2007

Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
Department of Physiology, Neurological Science Research Center, Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada.

The grip force holding an object between fingers usually increases before or simultaneously with arm movement thus preventing the object from sliding. We experimentally analyzed and simulated this anticipatory behavior based on the following notions. (1) To move the arm to a new position, the nervous system shifts the threshold position at which arm muscles begin to be recruited. Deviated from their activation thresholds, arm muscles generate activity and forces that tend to minimize this deviation by bringing the arm to a new position. (2) To produce a grip force, with or without arm motion, the nervous system changes the threshold configuration of the hand. This process defines a threshold (referent) aperture (R(a)) of appropriate fingers. The actual aperture (Q(a)) is constrained by the size of the object held between the fingers whereas, in referent position R(a), the fingers virtually penetrate the object. Deviated by the object from their thresholds of activation, hand muscles generate activity and grip forces in proportion to the gap between the Q(a) and R(a). Thus, grip force emerges since the object prevents the fingers from reaching the referent position. (3) From previous experiences, the system knows that objects tend to slide off the fingers when arm movements are made and, to prevent sliding, it starts narrowing the referent aperture simultaneously with or somewhat before the onset of changes in the referent arm position. (4) The interaction between the fingers and the object is accomplished via the elastic pads on the tips of fingers. The pads are compressed not only due to the grip force but also due to the tangential inertial force ("load") acting from the object on the pads along the arm trajectory. Compressed by the load force, the pads move back and forth in the gap between the finger bones and object, thus inevitably changing the normal component of the grip force, in synchrony with and in proportion to the load force. Based on these notions, we simulated experimental elbow movements and grip forces when subjects rapidly changed the elbow angle while holding an object between the index finger and the thumb. It is concluded that the anticipatory increase in the grip force with or without correlation with the tangential load during arm motion can be explained in neurophysiological and biomechanical terms without relying on programming of grip force based on an internal model.

UI MeSH Term Description Entries
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011187 Posture The position or physical attitude of the body. Postures
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003657 Decision Making The process of making a selective intellectual judgment when presented with several complex alternatives consisting of several variables, and usually defining a course of action or an idea. Credit Assignment,Assignment, Credit,Assignments, Credit,Credit Assignments
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
September 2009, Neuroscience,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
March 2003, Experimental brain research,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
March 2002, Journal of motor behavior,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
January 2021, Journal of Alzheimer's disease : JAD,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
September 2010, Journal of neurophysiology,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
February 1993, Journal of neurophysiology,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
December 2003, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
December 2019, Journal of neurophysiology,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
November 2004, Human movement science,
Jean-François Pilon, and Sophie J De Serres, and Anatol G Feldman
July 2019, Experimental brain research,
Copied contents to your clipboard!