Oncolytic herpes simplex virus type 1 and host immune responses. 2007

Hiroshi Fukuhara, and Tomoki Todo
Department of Urology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

The use of oncolytic herpes simplex virus type 1 (HSV-1) is a promising strategy for cancer treatment. Accumulating evidence indicates that, aside from the extent of replication capability within the tumor, the efficacy of an oncolytic HSV-1 depends on the extent of induction of host antitumor immune responses. Ways to modify the host immune responses toward viral oncolysis include expression of immunostimulatory molecules using oncolytic HSV-1 as a vector and co-administration of reagents that modulate immune reactions. Viral propagation may be enhanced via temporary suppression of innate immune responses. Elucidation of the role of the host immune system in oncolytic HSV-1 therapy is the key to establishing the approach as a useful clinical means for cancer treatment.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D050130 Oncolytic Virotherapy Use of attenuated VIRUSES as ANTINEOPLASTIC AGENTS to selectively kill CANCER cells. Oncolytic Virus Therapy,Virotherapy, Oncolytic,Oncolytic Virotherapies,Oncolytic Virus Therapies,Therapies, Oncolytic Virus,Therapy, Oncolytic Virus,Virotherapies, Oncolytic,Virus Therapies, Oncolytic,Virus Therapy, Oncolytic
D018259 Herpesvirus 1, Human The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions. HSV-1,Herpes Simplex Virus 1,HHV-1,Herpes Simplex Virus Type 1,Herpesvirus 1 (alpha), Human,Human Herpesvirus 1

Related Publications

Hiroshi Fukuhara, and Tomoki Todo
December 2019, Viral immunology,
Hiroshi Fukuhara, and Tomoki Todo
December 2016, Current opinion in virology,
Hiroshi Fukuhara, and Tomoki Todo
February 2015, Human gene therapy,
Hiroshi Fukuhara, and Tomoki Todo
January 2016, Journal of nutritional science and vitaminology,
Hiroshi Fukuhara, and Tomoki Todo
June 2011, Nihon rinsho. Japanese journal of clinical medicine,
Hiroshi Fukuhara, and Tomoki Todo
December 2023, The Journal of allergy and clinical immunology,
Hiroshi Fukuhara, and Tomoki Todo
November 1999, The Annals of thoracic surgery,
Hiroshi Fukuhara, and Tomoki Todo
December 2018, BMC immunology,
Hiroshi Fukuhara, and Tomoki Todo
November 2005, Urology,
Hiroshi Fukuhara, and Tomoki Todo
June 2008, Journal of dermatological science,
Copied contents to your clipboard!