Basilar membrane tension calculations for the gerbil cochlea. 2007

Ram C Naidu, and David C Mountain
Hearing Research Center Boston University, Boston, Massachusetts 02215, USA.

Anatomical studies suggest that the basilar membrane (BM) supports a radial tension, which is potentially important in cochlear mechanics. Assuming that the tension exists, we have calculated its magnitude from measurements of BM stiffness, longitudinal coupling, and geometry using a BM model. Results for the gerbil cochlea show that the tension decreases from the base to the apex of the cochlea and generates a tensile stress that is comparable in magnitude to the stress generated in other physiological systems. The model calculations are augmented by experiments that investigate the source of BM tension. The experimental results suggest that BM tension is maintained by the spiral ligament.

UI MeSH Term Description Entries
D008022 Ligaments Shiny, flexible bands of fibrous tissue connecting together articular extremities of bones. They are pliant, tough, and inextensile. Interosseal Ligament,Interosseous Ligament,Interosseal Ligaments,Interosseous Ligaments,Ligament,Ligament, Interosseal,Ligament, Interosseous
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009925 Organ of Corti The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain. Basilar Papilla,Corti's Organ,Spiral Organ,Corti Organ,Cortis Organ,Organ, Corti's,Organ, Spiral,Organs, Spiral,Papilla, Basilar,Spiral Organs
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004548 Elasticity Resistance and recovery from distortion of shape.
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001489 Basilar Membrane A basement membrane in the cochlea that supports the hair cells of the ORGAN OF CORTI, consisting keratin-like fibrils. It stretches from the SPIRAL LAMINA to the basilar crest. The movement of fluid in the cochlea, induced by sound, causes displacement of the basilar membrane and subsequent stimulation of the attached hair cells which transform the mechanical signal into neural activity. Basilar Membranes,Membrane, Basilar,Membranes, Basilar
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

Ram C Naidu, and David C Mountain
September 2015, Hearing research,
Ram C Naidu, and David C Mountain
September 2002, Journal of the Association for Research in Otolaryngology : JARO,
Ram C Naidu, and David C Mountain
March 2017, Hearing research,
Ram C Naidu, and David C Mountain
January 2001, Hearing research,
Ram C Naidu, and David C Mountain
May 1998, Journal of neurophysiology,
Ram C Naidu, and David C Mountain
January 1982, Science (New York, N.Y.),
Ram C Naidu, and David C Mountain
April 2008, The Journal of the Acoustical Society of America,
Ram C Naidu, and David C Mountain
November 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!