Contractile properties and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy. 1992

A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
Institute of Cardiovascular Surgery, University of Padua, Italy.

BACKGROUND We performed a comparative study on Ca2+ release activity of the sarcoplasmic reticulum and calcium sensitivity of contractile apparatus of chemically skinned myocardial fibers obtained from four nonfailing human hearts and 13 excised hearts from patients with idiopathic dilated cardiomyopathy. RESULTS Ca2+ sensitivity of contractile apparatus was studied by following the isometric tension developed by chemically skinned myocardial fibers challenged with solutions of decreasing pCa. Ca2+ release from sarcoplasmic reticulum was monitored indirectly by measurement of the isometric tension developed by skinned fibers challenged with caffeine. We observed no significant difference of Ca2+ sensitivity and cooperativity between normal myocardium (pCa50 = 6.00 +/- 0.05; Hill coefficient, nHill = 2.07 +/- 0.10) and dilated cardiomyopathy (pCa50 = 6.03 +/- 0.07; nHill = 2.72 +/- 0.30) when the fibers were stretched to 130% of the resting length. We also found that both in normal myocardium and dilated cardiomyopathy, stretching to 150% of the resting length increased the Ca2+ sensitivity of the contractile system; pCa50 = 6.21 +/- 0.01 and 6.13 +/- 0.04 in normal and dilated cardiomyopathy, respectively, whereas in dilated cardiomyopathy there was a decrease of Hill coefficient with stretching that was not observed in the control group. The caffeine threshold in idiopathic dilated cardiomyopathy was markedly increased compared with the control group, 1.94 +/- 0.27 mmol/l and 0.29 +/- 0.04 mmol/l caffeine, respectively, whereas there were no significant differences in the extent and rate of caffeine-induced Ca2+ release. CONCLUSIONS These results indicate that in idiopathic dilated cardiomyopathy there is no alteration of contractile and regulatory proteins; on the contrary, the gating mechanism of the Ca2+ release channel of sarcoplasmic reticulum is abnormal, suggesting a possible involvement of the excitation-contraction coupling in the pathogenesis of this disease. It should also be taken into account, however, that the increased caffeine threshold in dilated cardiomyopathy would be a result of the enhanced resistance to the skinning procedure secondary to the modification of lipid species and/or content in sarcoplasmic reticulum membrane.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002311 Cardiomyopathy, Dilated A form of CARDIAC MUSCLE disease that is characterized by ventricular dilation, VENTRICULAR DYSFUNCTION, and HEART FAILURE. Risk factors include SMOKING; ALCOHOL DRINKING; HYPERTENSION; INFECTION; PREGNANCY; and mutations in the LMNA gene encoding LAMIN TYPE A, a NUCLEAR LAMINA protein. Cardiomyopathy, Congestive,Congestive Cardiomyopathy,Dilated Cardiomyopathy,Cardiomyopathy, Dilated, 1a,Cardiomyopathy, Dilated, Autosomal Recessive,Cardiomyopathy, Dilated, CMD1A,Cardiomyopathy, Dilated, LMNA,Cardiomyopathy, Dilated, With Conduction Defect 1,Cardiomyopathy, Dilated, with Conduction Deffect1,Cardiomyopathy, Familial Idiopathic,Cardiomyopathy, Idiopathic Dilated,Cardiomyopathies, Congestive,Cardiomyopathies, Dilated,Cardiomyopathies, Familial Idiopathic,Cardiomyopathies, Idiopathic Dilated,Congestive Cardiomyopathies,Dilated Cardiomyopathies,Dilated Cardiomyopathies, Idiopathic,Dilated Cardiomyopathy, Idiopathic,Familial Idiopathic Cardiomyopathies,Familial Idiopathic Cardiomyopathy,Idiopathic Cardiomyopathies, Familial,Idiopathic Cardiomyopathy, Familial,Idiopathic Dilated Cardiomyopathies,Idiopathic Dilated Cardiomyopathy
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children

Related Publications

A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
January 1992, Basic research in cardiology,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
October 1989, Circulation research,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
June 2008, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
December 2022, Heart rhythm,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
October 2004, Biochemical and biophysical research communications,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
September 1998, Annals of the New York Academy of Sciences,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
March 2011, Journal of molecular and cellular cardiology,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
January 1982, Annals of the New York Academy of Sciences,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
August 1995, Circulation,
A D'Agnolo, and G B Luciani, and A Mazzucco, and V Gallucci, and G Salviati
July 1997, Molecular and cellular biochemistry,
Copied contents to your clipboard!