Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae. 2007

Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
Research Center for Materials Science, Nagoya University, Japan. tyoshihi@biochem.chem.nagoya-u.ac.jp

The splicing of nuclear encoded RNAs, including tRNAs, has been widely believed to occur in the nucleus. However, we recently found that one of the tRNA splicing enzymes, splicing endonuclease, is localized to the outer surface of mitochondria in Saccharomyces cerevisiae. These results suggested the unexpected possibility of tRNA splicing in the cytoplasm. To investigate this possibility, we examined whether cytoplasmic pre-tRNAs are bona fide intermediates for tRNA maturation in vivo. We isolated a new reversible allele of temperature-sensitive (ts) sen2 (HA-sen2-42), which encodes a mutant form of one of the catalytic subunits of yeast splicing endonuclease. The HA-sen2-42 cells accumulated large amounts of pre-tRNAs in the cytoplasm at a restrictive temperature, but the pre-tRNAs were diminished when the cells were transferred to a permissive temperature. Using pulse-chase/hybrid-precipitation techniques, we showed that the pre-tRNAs were not degraded but rather converted into mature tRNAs during incubation at the permissive temperature. These and other results indicate that, in S. cerevisiae, pre-tRNAs in the cytoplasm are genuine substrates for splicing, and that the splicing is indeed carried out in the cytoplasm.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
February 2010, Molecular biology of the cell,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
March 1993, Journal of bacteriology,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
July 1986, Molecular and cellular biology,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
April 1988, Genetics,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
December 1999, Journal of bacteriology,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
May 1992, Molecular and cellular biology,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
March 1990, Molecular and cellular biology,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
September 1988, The Journal of biological chemistry,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
March 1992, Biochemistry,
Tohru Yoshihisa, and Chié Ohshima, and Kaori Yunoki-Esaki, and Toshiya Endo
May 1997, The Journal of biological chemistry,
Copied contents to your clipboard!