Reactive oxygen species and DNA damage after ultrasound exposure. 2007

Katarzyna Milowska, and Teresa Gabryelak
Department of General Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland. matsubara@bio.keio.ac.jp

The aim of this work was to detect the formation of hydrogen peroxide and hydroxyl radicals after ultrasound (US) exposure and test the hypothesis that reactive oxygen species induced by ultrasound can contribute to DNA damage. Formation of reactive oxygen species was observed in incubated medium after sonication with 1 MHz continuous ultrasound at the intensities of 0.61-2.44 W/cm2. Free radicals and hydrogen peroxide produced by ultrasound exposure of cells can lead to DNA damage. Comet assay was used to assess the effect of ultrasound on the level of nuclear DNA damage. The nucleated erythrocytes from fish were exposed in vitro to ultrasound at the same intensities and frequency. It was noticed that ultrasound in all used intensities induced DNA damage. The effect was not eliminated by the addition of catalase, which indicates that DNA damage was not caused by hydrogen peroxide only. The results showed that the DNA damage can be repair and this mechanism was the most effective after 30 and 60 min after sonication. Furthermore, the ultrasound-induced DNA damage in the presence of sonosensitizer (Zn- and AlCl-phthalocyanine) was studied. It was noticed that phthalocyaniens (Pcs) alone or with ultrasound did not induce significant changes in the level of DNA damage.

UI MeSH Term Description Entries
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013010 Sonication The application of high intensity ultrasound to liquids. Sonications
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Katarzyna Milowska, and Teresa Gabryelak
October 1998, Indian journal of physiology and pharmacology,
Katarzyna Milowska, and Teresa Gabryelak
August 2021, Toxicological sciences : an official journal of the Society of Toxicology,
Katarzyna Milowska, and Teresa Gabryelak
May 1996, Biochemistry and molecular biology international,
Katarzyna Milowska, and Teresa Gabryelak
August 1995, Biochemical Society transactions,
Katarzyna Milowska, and Teresa Gabryelak
January 2021, International review of cell and molecular biology,
Katarzyna Milowska, and Teresa Gabryelak
August 1997, Seikagaku. The Journal of Japanese Biochemical Society,
Katarzyna Milowska, and Teresa Gabryelak
January 2014, Biological trace element research,
Katarzyna Milowska, and Teresa Gabryelak
January 1991, Free radical research communications,
Katarzyna Milowska, and Teresa Gabryelak
April 2012, Cancer prevention research (Philadelphia, Pa.),
Copied contents to your clipboard!