Separation of receptor-binding and profusogenic domains of glycoprotein D of herpes simplex virus 1 into distinct interacting proteins. 2007

Guoying Zhou, and Bernard Roizman
The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA.

The 369-residue glycoprotein D (gD) is the entry, receptor-binding protein of herpes simplex virus 1. The common receptors for viral entry are nectin-1, HveA, and a specific O-linked sulfated proteoglycan. The major receptor-binding sites of gD are at the N terminus, whereas the domain required for fusion of viral envelope with the plasma membrane is at the C terminus of the ectodomain (residues 260-310). In the course of retargeting gD to the urokinase plasminogen activator (uPA) receptor for potential therapeutic applications, we obtained a genetically engineered infectious virus in which the receptor-binding domain consisting of the N-terminal domain of uPA fused to residues 33-60 of gD was separated from an independently expressed C-terminal domain of gD containing residues 219-369. The intervening sequences (residues 62-218) were replaced by a stop codon and a promoter for the C-terminal domain of gD. The physical interaction of the two components was reconstructed by coimmunoprecipitation of the N-terminal domain of uPA with the C-terminal domain of gD. These results indicate that codons 61-218 of gD do not encode executable functions required for viral entry into cells and suggest that the receptor-binding ligand must interact with but need not alter the structure of the residual portion of gD to effect virus entry. This finding opens the way for the development of a family of recombinant viruses in which the profusion domain of gD and independently furnished, interacting receptor-binding domains effect entry of the virus via a range of receptors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Guoying Zhou, and Bernard Roizman
January 2005, Journal of virology,
Guoying Zhou, and Bernard Roizman
December 1999, The Journal of experimental medicine,
Guoying Zhou, and Bernard Roizman
August 2005, The Journal of biological chemistry,
Guoying Zhou, and Bernard Roizman
May 1990, Journal of virology,
Guoying Zhou, and Bernard Roizman
June 1997, Biochemical and biophysical research communications,
Guoying Zhou, and Bernard Roizman
December 2011, Nature communications,
Guoying Zhou, and Bernard Roizman
February 1989, Journal of virology,
Guoying Zhou, and Bernard Roizman
September 2011, PLoS pathogens,
Guoying Zhou, and Bernard Roizman
August 2000, Journal of virology,
Guoying Zhou, and Bernard Roizman
October 2005, Expert review of vaccines,
Copied contents to your clipboard!