Cloning, sequencing of bone morphogenetic protein from sea urchin, Hemicentrotus pulcherrimus. 2007

Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan.

A cDNA coding for bone morphogenetic protein (BMP) homolog of the sea urchin, Hemicentrotus pulcherrimus, was isolated from mid-gastrula using reverse transcription-polymerase chain reaction (RT-PCR) technique. The 2314 nucleotide sequence contains a 1383 open reading frame corresponding to a translation product of 461 amino acids. Comparison of the nucleotide and deduced amino acid sequence with BMP isolated from Strongylocentrotus purpuratus (SpBMP5-7; accession No. Z48313) shows a high degree of conservation. HpBMP seems to belong to the 60A subgroup as a result. A mRNA coding H. pulcherrimus BMP (HpBMP) was not detected in the unfertilized egg, but it was detected from blastula to prism stages.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D047330 Hemicentrotus A genus of SEA URCHINS in the family Strongylocentrotidae with a hemicyclic apical disk and short spines. Hemicentrotus pulcherrimus
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA
D019485 Bone Morphogenetic Proteins Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins. Bone Morphogenetic Protein,Morphogenetic Protein, Bone,Morphogenetic Proteins, Bone

Related Publications

Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
October 1997, Zoological science,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
January 2021, Methods in molecular biology (Clifton, N.J.),
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
December 1996, Zoological science,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
September 2013, Antonie van Leeuwenhoek,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
December 2014, Mitochondrial DNA,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
April 2018, Development, growth & differentiation,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
June 1992, Journal of biochemistry,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
March 2003, Ying yong sheng tai xue bao = The journal of applied ecology,
Yumi Kurogi, and Kazumasa Ohta, and Tohru Nakazawa, and Hiroaki Tosuji
June 1992, Development, growth & differentiation,
Copied contents to your clipboard!