UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model. 2007

Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein-protein binding, and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long-term memory associated with the accumulation of UmuD'. Together, these provide a tight regulation of mutagenesis, resulting, we show, in a "digital" turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biology 3(7): e238) is the result of positive feedback from Pol V to RecA filaments.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
June 1987, Photochemistry and photobiology,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
December 2008, Current microbiology,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
December 2009, Journal of theoretical biology,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
April 1998, Genetics,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
January 1989, Environmental and molecular mutagenesis,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
September 2008, International journal of biological sciences,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
February 2008, Mutation research,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
October 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
May 2009, Genetics,
Sandeep Krishna, and Sergei Maslov, and Kim Sneppen
September 2004, Journal of bacteriology,
Copied contents to your clipboard!