SWAP-70 is required for oncogenic transformation by v-Src in mouse embryo fibroblasts. 2007

Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan. ayfukui@mail.ecc.u-tokyo.ac.jp

SWAP-70 is a phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) binding protein, which acts in F-actin rearrangement. The role of SWAP-70 in oncogenic transformation of mouse embryo fibroblasts (MEFs) by v-Src was examined by use of MEFs defective in SWAP-70. v-Src morphologically transformed MEFs lacking SWAP-70, but growth of the transformed cells in culture was slower than that of cells supplemented with exogenous SWAP-70. The v-Src-transformed MEFs deficient in SWAP-70 were unable to grow in soft agar while those expressing SWAP70 readily formed colonies, suggesting that SWAP-70 is required for anchorage independent growth of v-Src transformed MEFs. When transplanted in nude mice, tumors formed by the v-Src transformed SWAP-70(-/-) MEFs were smaller than those formed by cells expressing exogenous SWAP-70. These results suggest that SWAP-70 may be required for oncogenic transformation and contributes to cell growth in MEFs transformed by v-Src.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015688 Oncogene Protein pp60(v-src) A tyrosine-specific protein kinase encoded by the v-src oncogene of ROUS SARCOMA VIRUS. The transforming activity of pp60(v-src) depends on both the lack of a critical carboxy-terminal tyrosine phosphorylation site at position 527, and the attachment of pp60(v-src) to the plasma membrane which is accomplished by myristylation of its N-terminal glycine. Oncogene Protein pp60(src),pp60(v-src),src Oncogene Protein pp60,v-src Protein pp60,Avian Sarcoma Virus-Transforming Protein,Oncogene Protein src,Phosphoprotein pp60(v-src),Rous Sarcoma Virus-Transforming Protein pp60(v-src),p60(v-src),pp60 v-src,src Oncogene Product pp60,v-src Protein,Avian Sarcoma Virus Transforming Protein,Protein pp60, v-src,Protein src, Oncogene,pp60 v src,pp60, v-src Protein,src, Oncogene Protein,v src Protein,v src Protein pp60,v-src, pp60
D015778 Minor Histocompatibility Antigens Allelic alloantigens often responsible for weak graft rejection in cases when (major) histocompatibility has been established by standard tests. In the mouse they are coded by more than 500 genes at up to 30 minor histocompatibility loci. The most well-known minor histocompatibility antigen in mammals is the H-Y antigen. Histocompatibility Antigens, Minor,Minor Histocompatibility Antigen,Minor Histocompatibility Peptide,Minor Histocompatibility Peptides,Antigen, Minor Histocompatibility,Histocompatibility Antigen, Minor,Histocompatibility Peptide, Minor,Histocompatibility Peptides, Minor,Peptide, Minor Histocompatibility

Related Publications

Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
April 2008, IUBMB life,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
July 2016, Experimental cell research,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
September 2011, Biochimie,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
May 1998, Molecular and cellular biology,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
July 1995, Oncogene,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
December 2010, PloS one,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
March 1991, Oncogene,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
June 1995, Oncogene,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
January 1985, Basic life sciences,
Yasuhisa Fukui, and Takayuki Tanaka, and Hiroyuki Tachikawa, and Sayoko Ihara
May 2015, Oncotarget,
Copied contents to your clipboard!