A simplified modification of the AOAC official method for determination of total dietary fiber using newly developed enzymes. 2007

Shusaku Tada, and Satoshi Innami
s.tada@daiwa-enzymes.co.jp

Since 1985, AOAC Method 985.29 has been globally adopted as a standard method for determination of total dietary fiber in foods. Nevertheless, an aspect of AOAC Method 985.29 that needs to be improved is the laborious process to treat 3 enzymes separately at their individual proper pH, which is quite time-consuming. Several examinations have been carried out to resolve this problem. The characteristics of newly developed thermostable alpha-amylase, neutral protease, and amyloglucosidase were evaluated based on the pH-activity profile and the property of starch hydrolysis in comparison with those of the conventional enzyme reagents. These 3 developed enzymes were found to work under the same pH condition and to accomplish sufficient digestion for the typical 3 starches: soluble starch, corn starch, and wheat starch. The experimental results revealed that the dietary fiber determination in foods could be performed without pH adjustment in the enzymatic digestion process. The modified method will be greatly helpful in determining the total dietary fiber contents in food materials with less laborious work and with an accuracy equivalent to that of AOAC Method 985.29.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D004043 Dietary Fiber The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins. Fiber, Dietary,Roughage,Wheat Bran,Bran, Wheat,Brans, Wheat,Dietary Fibers,Fibers, Dietary,Roughages,Wheat Brans
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D005504 Food Analysis Measurement and evaluation of the components of substances to be taken as FOOD. Analysis, Food,Analyses, Food,Food Analyses
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

Shusaku Tada, and Satoshi Innami
January 1990, Advances in experimental medicine and biology,
Shusaku Tada, and Satoshi Innami
January 1988, Journal - Association of Official Analytical Chemists,
Shusaku Tada, and Satoshi Innami
July 2023, Journal of AOAC International,
Shusaku Tada, and Satoshi Innami
May 1971, Journal - Association of Official Analytical Chemists,
Shusaku Tada, and Satoshi Innami
January 1999, Journal of AOAC International,
Shusaku Tada, and Satoshi Innami
January 1993, Journal of AOAC International,
Shusaku Tada, and Satoshi Innami
August 1997, International journal of biological macromolecules,
Copied contents to your clipboard!