Biosynthesis of proinsulin and insulin in newborn rat pancreas. Interaction of glucose, cyclic AMP, somatostatin, and sulfonylureas on the (3H) leucine incorporation into immunoreactive insulin. 1976

S D Garcia, and C Jarrousse, and G Rosselin

The purpose of the present study was to investigate the regulation of insulin biosynthesis during the perinatal period. The incorporation of [3H]leucine into total immunoreactive insulin (IRI) and into IRI fractions was measured by a specific immunoprecipitation procedure after incubation, extraction, and gel filtration in isolated 3-day-old rat pancreases without prior isolation of islets. IRI fractions were identified by their elution profile, their immunological properties, and their ability to compete with the binding of 125 I-insulin in rat liver plasma membranes. No specific incorporation of [3H]leucine was found in the IRI eluted in the void volume, making it unlikely that this fraction behaves as a precursor of (pro) insulin in this system. In all conditions tested, the incorporation of [3H]leucine was linearly correlated with time. Optimal concentration of glucose (11 mM) activated six- to sevenfold the [3H]leucine incorporation into IRI. Theophylline or N6O2-dibutyryl- (db) cAMP at 1.6 mM glucose significantly increased the [3H]leucine incorporation. Glucose at 16.7 mM further enhanced the effect of both drugs. Contrarily, somatostatin (1-10 mug/ml) inhibits the rate of [3H]leucine incorporation into IRI in the presence of 11 mM glucose; this effect was observed at 5.5 mM glucose and was not modified by any further increase in glucose concentrations up to 27.5 mM. Theophylline or dbcAMP at 10 mM concentration did not reverse the somatostatin inhibitory effect on either insulin biosynthesis or release. Somatostatin also inhibited both processes in isolated islets from the 3-day-old rat pancreas. High Ca++ concentration in the incubation medium reversed the inhibitory effect of somatostatin on glucose-induced insulin biosynthesis as well as release. In both systems the inhibitory effect of somatostatin on insulin biosynthesis and release correlated well. Glipizide (10-100 muM) AND TOLBUTAMIDE (400 MUM) inhibited the stimulatory effect of glucose, dbcAMP, and theophylline on [3H]leucine incorporation into IRI. The concentrations of glipizide that were effective in inhibiting [3H]leucine incorporation into IRI were smaller than those required to inhibit the phosphodiesterase activity in isolated islets of 3-day-old rat pancreas. These data suggest the following conclusions: (a) the role of the cAMP-phosphodiesterase system on insulin biosynthesis is likely to be greater in newborns than in adults; (b) the greater effectiveness of glucose and the cAMP system on insulin biosynthesis than on insulin release might possibly be related to the rapid accumulation of pancreatic IRI which is observed in the perinatal period; (c) somatostatin, by direct interaction with the endocrine tissue, can inhibit glucose and cAMP-induced insulin biosynthesis as well as release; calcium reverses this inhibition; (d) sulfonylureas inhibit insulin biosynthesis in newborn rat pancreas an effect which has to be considered in the use of these agents in human disease.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D005913 Glipizide An oral hypoglycemic agent which is rapidly absorbed and completely metabolized. Glidiazinamide,Glydiazinamide,Glypidizine,Glucotrol,Glupitel,K-4024,Melizide,Mindiab,Minidiab,Minodiab,Ozidia,K 4024,K4024
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

S D Garcia, and C Jarrousse, and G Rosselin
June 1977, Diabetes,
S D Garcia, and C Jarrousse, and G Rosselin
January 1975, Endocrinology,
S D Garcia, and C Jarrousse, and G Rosselin
September 1977, The Journal of endocrinology,
S D Garcia, and C Jarrousse, and G Rosselin
November 1967, The Journal of endocrinology,
S D Garcia, and C Jarrousse, and G Rosselin
May 1978, The Journal of clinical investigation,
S D Garcia, and C Jarrousse, and G Rosselin
December 1963, Biochimica et biophysica acta,
Copied contents to your clipboard!