Continuous carry-over designs for fMRI. 2007

Geoffrey Karl Aguirre
Department of Neurology, University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, PA 19104, USA. aguirreg@mail.med.upenn.edu

This paper describes continuous carry-over fMRI experiments. In these studies, stimuli are presented in an unbroken, sequential manner, and can be used to estimate simultaneously the mean difference in neural activity between stimuli as well as the effect of one stimulus upon another (carry-over effects). Neural adaptation, which has been the basis of many recent fMRI studies, is shown to be a specific form of carry-over effect. With this approach, the adapting effects of stimuli may be studied in a continuous sequence, as opposed to within isolated pairs or blocks. Additionally, the average, direct effect of a stimulus upon neural response can form the basis of a simultaneously obtained distributed pattern analysis, allowing comparison of neural population coding on focal (within voxel) and distributed (across voxel) spatial scales. These studies are ideally conducted with serially balanced sequences, in which every stimulus precedes and follows every other stimulus. While m-sequences can provide this stimulus order, the type 1 index 1 sequence of Finney and Outhwaite may be used in fMRI studies for those experimental designs for which an m-sequence solution does not exist. Continuous carry-over designs with serially balanced sequences are argued to be particularly well suited to the characterization of "similarity spaces," in which the perceptual similarity of stimuli is related to the structure of neural representation both within and across voxels. These concepts are illustrated with a worked example involving the neural representation of color. It is shown that data from a single scanning session are sufficient to detect direct and carry-over effects, as well as demonstrate the correspondence of the similarity structure of distributed patterns of neural firing and the perceptual similarity of a set of colors.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations

Related Publications

Geoffrey Karl Aguirre
June 1966, Biometrics,
Geoffrey Karl Aguirre
January 1992, Statistics in medicine,
Geoffrey Karl Aguirre
December 2020, Cephalalgia : an international journal of headache,
Geoffrey Karl Aguirre
February 1987, The American journal of psychiatry,
Geoffrey Karl Aguirre
January 2012, Current biology : CB,
Geoffrey Karl Aguirre
January 1984, International rehabilitation medicine,
Geoffrey Karl Aguirre
January 1984, The Journal of automatic chemistry,
Geoffrey Karl Aguirre
May 1959, The Journal of speech and hearing disorders,
Copied contents to your clipboard!