A note on permutation tests for variance components in multilevel generalized linear mixed models. 2007

Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
Harvard Medical School, Boston, MA, USA. fitzmaur@hsph.harvard.edu

In many applications of generalized linear mixed models to multilevel data, it is of interest to test whether a random effects variance component is zero. It is well known that the usual asymptotic chi-square distribution of the likelihood ratio and score statistics under the null does not necessarily hold. In this note we propose a permutation test, based on randomly permuting the indices associated with a given level of the model, that has the correct Type I error rate under the null. Results from a simulation study suggest that it is more powerful than tests based on mixtures of chi-square distributions. The proposed test is illustrated using data on the familial aggregation of sleep disturbance.

UI MeSH Term Description Entries
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D001699 Biometry The use of statistical and mathematical methods to analyze biological observations and phenomena. Biometric Analysis,Biometrics,Analyses, Biometric,Analysis, Biometric,Biometric Analyses
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear

Related Publications

Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
January 2020, Multivariate behavioral research,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
June 1999, Biometrics,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
May 2003, Genetic epidemiology,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
June 2012, Biometrics,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
December 2013, Biometrics,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
December 2021, Genetic epidemiology,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
January 2013, Biostatistics (Oxford, England),
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
January 2016, Journal of advanced research,
Garrett M Fitzmaurice, and Stuart R Lipsitz, and Joseph G Ibrahim
January 1999, Genetic epidemiology,
Copied contents to your clipboard!