Expression of type I collagen pro-alpha 2 chain mRNA in adult human permanent teeth as revealed by in situ hybridization. 1992

P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
Department of Dental Radiology/Oral Pathology, University of Helsinki, Finland.

The expression of the gene COL1A2, coding for the pro-alpha 2 chain of type I pro-collagen, was analyzed in fully developed human permanent teeth. The teeth were fixed with formalin, demineralized with EDTA for about ten weeks, and embedded in paraffin. Pro-alpha 2(I) mRNA was localized in the sections by in situ hybridization, with use of [35S)]-labeled single-stranded RNA probes. The amount of mRNA for pro-alpha 2(I) collagen chain, as indicated by the relative densities of silver grains and the grain counts per cell in autoradiography, was high in odontoblasts, whereas in pulpal fibroblasts it was low. High levels of pro-alpha 2(I)mRNA expression were also present in those odontoblasts which had elaborated new dentin matrix in response to dental caries. Expression in the periodontal ligament, including the cementoblast layer, was slightly stronger than that in odontoblasts. The intense expression of pro-alpha 2(I) mRNA in odontoblasts of adult teeth suggests that even after the completion of primary dentin formation, they continue to synthesize heterotrimeric type I collagen molecules. Cell type-specific differences in the expression of pro-alpha 2(I) mRNA imply that type I collagen probably plays a major role in the regulation of the structure and function of dental tissues. Finally, in situ hybridization enabled pro-alpha 2(I) collagen mRNA to be detected in tissue sections even after prolonged demineralization, and thus it proved to be a valuable technique for analysis of gene expression in adult dental tissues, as shown here for COL1A2.

UI MeSH Term Description Entries
D008963 Molar The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821) Molars
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009804 Odontoblasts The mesenchymal cells which line the DENTAL PULP CAVITY and produce DENTIN. They have a columnar morphology in the coronal pulp but are cuboidal in the root pulp, or when adjacent to tertiary dentin. Odontoblast
D010513 Periodontal Ligament The fibrous CONNECTIVE TISSUE surrounding the TOOTH ROOT, separating it from and attaching it to the alveolar bone (ALVEOLAR PROCESS). Alveolodental Ligament,Alveolodental Membrane,Gomphosis,Alveolodental Ligaments,Alveolodental Membranes,Gomphoses,Ligament, Alveolodental,Ligament, Periodontal,Membrane, Alveolodental,Periodontal Ligaments
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D003804 Dentin The hard portion of the tooth surrounding the pulp, covered by enamel on the crown and cementum on the root, which is harder and denser than bone but softer than enamel, and is thus readily abraded when left unprotected. (From Jablonski, Dictionary of Dentistry, 1992) Dentine,Dentines,Dentins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
January 1986, FEBS letters,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
April 1994, Archives of oral biology,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
August 1994, Journal of dermatological science,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
January 1998, Placenta,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
March 1992, The Journal of investigative dermatology,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
January 1998, Connective tissue research,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
January 1987, Archives of dermatological research,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
January 1995, Experimental nephrology,
P L Lukinmaa, and A Vaahtokari, and S Vainio, and I Thesleff
July 1991, Journal of dermatological science,
Copied contents to your clipboard!