Long-term invariant parameters obtained from 24-h Holter recordings: a comparison between different analysis techniques. 2007

Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
Dipartimento di Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Over the last two decades, a large number of different methods had been used to study the fractal-like behavior of the heart rate variability (HRV). In this paper some of the most used techniques were reviewed. In particular, the focus is set on those methods which characterize the long memory behavior of time series (in particular, periodogram, detrended fluctuation analysis, rescale range analysis, scaled window variance, Higuchi dimension, wavelet-transform modulus maxima, and generalized structure functions). The performances of the different techniques were tested on simulated self-similar noises (fBm and fGn) for values of alpha, the slope of the spectral density for very small frequency, ranging from -1 to 3 with a 0.05 step. The check was performed using the scaling relationships between the various indices. DFA and periodogram showed the smallest mean square error from the expected values in the range of interest for HRV. Building on the results obtained from these tests, the effective ability of the different methods in discriminating different populations of patients from RR series derived from Holter recordings, was assessed. To this extent, the Noltisalis database was used. It consists of a set of 30, 24-h Holter recordings collected from healthy subjects, patients suffering from congestive heart failure, and heart transplanted patients. All the methods, with the exception at most of rescale range analysis, were almost equivalent in distinguish between the three groups of patients. Finally, the scaling relationships, valid for fBm and fGn, when empirically used on HRV series, also approximately held.

UI MeSH Term Description Entries
D003936 Diagnosis, Computer-Assisted Application of computer programs designed to assist the physician in solving a diagnostic problem. Computer-Assisted Diagnosis,Computer Assisted Diagnosis,Computer-Assisted Diagnoses,Diagnoses, Computer-Assisted,Diagnosis, Computer Assisted
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001145 Arrhythmias, Cardiac Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction. Arrhythmia,Arrythmia,Cardiac Arrhythmia,Cardiac Arrhythmias,Cardiac Dysrhythmia,Arrhythmia, Cardiac,Dysrhythmia, Cardiac
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015716 Electrocardiography, Ambulatory Method in which prolonged electrocardiographic recordings are made on a portable tape recorder (Holter-type system) or solid-state device ("real-time" system), while the patient undergoes normal daily activities. It is useful in the diagnosis and management of intermittent cardiac arrhythmias and transient myocardial ischemia. Ambulatory Electrocardiography,Electrocardiography, Dynamic,Electrocardiography, Holter,Holter ECG,Holter EKG,Holter Monitoring,Monitoring, Ambulatory Electrocardiographic,Monitoring, Holter,Ambulatory Electrocardiography Monitoring,Dynamic Electrocardiography,Electrocardiography Monitoring, Ambulatory,Holter Electrocardiography,Ambulatory Electrocardiographic Monitoring,ECG, Holter,ECGs, Holter,EKG, Holter,EKGs, Holter,Electrocardiographic Monitoring, Ambulatory,Holter ECGs,Holter EKGs,Monitoring, Ambulatory Electrocardiography

Related Publications

Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
December 1993, IEEE transactions on bio-medical engineering,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
July 2012, Journal of cardiology,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
January 2007, Studies in health technology and informatics,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
June 1997, European heart journal,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
January 1980, Medical instrumentation,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
June 1983, Cephalalgia : an international journal of headache,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
May 1988, Medical & biological engineering & computing,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
January 2020, PloS one,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
July 1994, Journal of electrocardiology,
Sergio Cerutti, and Federico Esposti, and Manuela Ferrario, and Roberto Sassi, and Maria Gabriella Signorini
September 1993, Medical & biological engineering & computing,
Copied contents to your clipboard!