Characterization, evolution and expression of the calmodulin1 genes from the amphioxus Branchiostoma belcheri tsingtauense. 2007

Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
Department of Marine Biology, Ocean University of China, Qingdao 266003, China.

Two full-length cDNAs, named CaM1a and CaM1b, encoding the highly conserved calmodulin1 (CaM1) proteins, were isolated from the cDNA library of amphioxus Branchiostoma belcheri tsingtauense. There are only two nucleotide differences between them, producing one amino acid difference between CaM1a and CaM1b. Comparison of the amino acid sequence of CaM1 reveals that the B. belcheri tsingtauense CaM1a is identical with CaM1 proteins of B. floridae and B. lanceolatum, Drosophila melanogaster CaM, ascidian Halocynthia roretzi CaMA and mollusk Aplysia californica CaM, and CaM1b differs only at one position (138, Asn to Asp). The phylogenetic analysis indicates that the CaM1 in all three amphioxus species appears to encode the conventional CaM and CaM2 might be derived from gene duplication of CaM1. Southern blot suggests that there are two copies of CaM1 in the genome of B. belcheri tsingtauense. Northern blot and in situ hybridization analysis shows the presence of two CaM1 mRNA transcripts with various expression levels in different adult tissues and embryonic stages in amphioxus B. belcheri tsingtauense. The evolution and diversity of metazoan CaM mRNA transcripts are also discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002816 Chordata, Nonvertebrate A portion of the animal phylum Chordata comprised of the subphyla CEPHALOCHORDATA; UROCHORDATA, and HYPEROTRETI, but not including the Vertebrata (VERTEBRATES). It includes nonvertebrate animals having a NOTOCHORD during some developmental stage. Invertebrate Chordate,Chordatas, Nonvertebrate,Chordate, Invertebrate,Chordates, Invertebrate,Invertebrate Chordates,Nonvertebrate Chordata,Nonvertebrate Chordatas
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
January 2005, Marine biotechnology (New York, N.Y.),
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
August 2005, Fish & shellfish immunology,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
October 2003, Zoological science,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
August 2005, Acta biochimica et biophysica Sinica,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
January 2004, Hereditas,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
December 2005, DNA sequence : the journal of DNA sequencing and mapping,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
March 2008, European journal of cell biology,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
February 2006, Gene,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
November 2004, Fish & shellfish immunology,
Jing Luan, and Zhenhui Liu, and Shicui Zhang, and Hongyan Li, and Chunxin Fan, and Lei Li
January 2005, The International journal of developmental biology,
Copied contents to your clipboard!