A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth muscle. 2007

Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176, Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.

We have developed a quantitative model for the creation of cytoplasmic Ca2+ gradients near the inner surface of the plasma membrane (PM). In particular we simulated the refilling of the sarcoplasmic reticulum (SR) via PM-SR junctions during asynchronous [Ca2+]i oscillations in smooth muscle cells of the rabbit inferior vena cava. We have combined confocal microscopy data on the [Ca2+]i oscillations, force transduction data from cell contraction studies and electron microscopic images to build a basis for computational simulations that model the transport of calcium ions from Na+/Ca2+ exchangers (NCX) on the PM to sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps on the SR as a three-dimensional random walk through the PM-SR junctional cytoplasmic spaces. Electron microscopic ultrastructural images of the smooth muscle cells were elaborated with software algorithms to produce a very clear and dimensionally accurate picture of the PM-SR junctions. From this study, we conclude that it is plausible and possible for enough Ca2+ to pass through the PM-SR junctions to replete the SR during the regenerative Ca2+ release, which underlies agonist induced asynchronous Ca2+ oscillations in vascular smooth muscle.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D053498 Sarcoplasmic Reticulum Calcium-Transporting ATPases Calcium-transporting ATPases that catalyze the active transport of CALCIUM into the SARCOPLASMIC RETICULUM vesicles from the CYTOPLASM. They are primarily found in MUSCLE CELLS and play a role in the relaxation of MUSCLES. Calcium-Transporting ATPases, Sarcoplasmic Reticulum,Sarcoplasmic Reticulum Calcium ATPase,SERCA Calcium ATPase,SERCA1 Calcium ATPase,SERCA2 Calcium ATPase,SERCA2a Calcium ATPase,SERCA3 Calcium ATPase,SR Ca(2+)-ATPase 1,SR Ca(2+)-ATPase 2,SR Ca(2+)-ATPase 3,Sarco-Endoplasmic Reticulum Ca2+-ATPase,Sarcoplasmic Reticulum Ca(2+)-ATPase,Sarcoplasmic Reticulum Calcium-Transporting ATPase 1,Sarcoplasmic Reticulum Calcium-Transporting ATPase 2,Sarcoplasmic Reticulum Calcium-Transporting ATPase 2a,Sarcoplasmic Reticulum Calcium-Transporting ATPase 3,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 2,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 2a,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 3,Sarcoplasmic-endoplasmic Reticulum Calcium ATPase 1,Ca2+-ATPase, Sarco-Endoplasmic Reticulum,Calcium Transporting ATPases, Sarcoplasmic Reticulum,Reticulum Ca2+-ATPase, Sarco-Endoplasmic,Sarco Endoplasmic Reticulum Ca2+ ATPase,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 2,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 2a,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 3,Sarcoplasmic Reticulum Calcium Transporting ATPase 1,Sarcoplasmic Reticulum Calcium Transporting ATPase 2,Sarcoplasmic Reticulum Calcium Transporting ATPase 2a,Sarcoplasmic Reticulum Calcium Transporting ATPase 3,Sarcoplasmic Reticulum Calcium Transporting ATPases,Sarcoplasmic endoplasmic Reticulum Calcium ATPase 1

Related Publications

Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
October 1993, Nature,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
June 1993, The Journal of physiology,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
May 2010, Free radical biology & medicine,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
January 2009, Cell calcium,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
January 2000, Archives of medical research,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
July 2022, International journal of molecular sciences,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
November 2005, Trends in cardiovascular medicine,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
April 1989, Cell calcium,
Nicola Fameli, and Cornelis van Breemen, and Kuo-Hsing Kuo
January 1988, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!