Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus. 2007

Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
Dept. of Physiology, University of Wisconsin School of Medicine, 1300 University Ave., Madison, WI 53706, USA.

Bushy cells in the ventral cochlear nucleus convey firing of auditory nerve fibers to neurons in the superior olivary complex that compare the timing and intensity of sounds at the two ears and enable animals to localize sound sources in the horizontal plane. Three voltage-sensitive conductances allow bushy cells to convey acoustic information with submillisecond temporal precision. All bushy cells have a low-voltage-activated, alpha-dendrotoxin (alpha-DTX)-sensitive K(+) conductance (g(KL)) that was activated by depolarization past -70 mV, was half-activated at -39.0 +/- 1.7 (SE) mV, and inactivated approximately 60% over 5 s. Maximal g(KL) varied between 40 and 150 nS (mean: 80.8 +/- 16.7 nS). An alpha-DTX-insensitive, tetraethylammonium (TEA)-sensitive, K(+) conductance (g(KH)) was activated at voltages positive to -40 mV, was half-activated at -18.1 +/- 3.8 mV, and inactivated by 90% over 5 s. Maximal g(KH) varied between 35 and 80 nS (mean: 58.2 +/- 6.5 nS). A ZD7288-sensitive, mixed cation conductance (g(h)) was activated by hyperpolarization greater than -60 mV and half-activated at -83.1 +/- 1.1 mV. Maximum g(h) ranged between 14.5 and 56.6 nS (mean: 30.0 +/- 5.5 nS). 8-Br-cAMP shifted the voltage sensitivity of g(h) positively. Changes in temperature stably altered the steady-state magnitude of I(h). Both g(KL) and g(KH) contribute to repolarizing action potentials and to sharpening synaptic potentials. Those cells with the largest g(h) and the largest g(KL) fired least at the onset of a depolarization, required the fastest depolarizations to fire, and tended to be located nearest the nerve root.

UI MeSH Term Description Entries
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
July 2005, Journal of neurophysiology,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
November 2020, Scientific reports,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
March 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
October 2009, The Journal of comparative neurology,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
September 2009, Journal of neurophysiology,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
December 2018, The Journal of membrane biology,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
September 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
December 1991, The Journal of comparative neurology,
Xiao-Jie Cao, and Shalini Shatadal, and Donata Oertel
January 2005, Hearing research,
Copied contents to your clipboard!