Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. 2007

Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
Diagnostic Imaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Chiba 263-8555, Japan.

Exposure to asbestos is a known etiological factor in malignant mesothelioma (MM). However, in vitro cell culture studies have provided paradoxical evidence that asbestos exposure to mesothelial cells causes cytotoxicity or apoptosis rather than malignant transformation. Although it has been shown that the iron associated with asbestos participates in the cell toxicity and probably MM pathogenesis via generation of reactive oxygen species (ROS), the molecular mechanisms largely remain unknown. Here, we demonstrate that ferritin heavy chain (FHC), a core subunit of iron-binding protein ferritin, works as an anti-apoptotic protein against toxic asbestos and oxidative stress in human mesothelial cells and MM cells. We found that FHC was induced in asbestos-exposed MeT-5A human mesothelial cells. The mesothelial cell line stably expressing FHC generated less amount of hydrogen peroxide (H2O2), one of the main ROS, after asbestos exposure and was more resistant to apoptosis induced by H2O2 compared with the cells transfected with the empty vector. Next, we investigated biological roles of FHC in human MM cell. We found that NCI-H2052, a human MM cell line, had a higher expression of endogenous FHC than MeT-5A and used the cell to address FHC function in MM. NCI-H2052 showed reduced H2O2 production and an apoptosis-resistant phenotype compared with MeT-5A. Suppression of the over-expressed FHC by using FHC small interfering RNA rendered the MM cells sensitive to apoptosis, suggesting the contribution of FHC to apoptosis resistance of the MM cells. Our findings highlight the potential role of FHC in the pathogenesis of asbestos-induced mesothelioma.

UI MeSH Term Description Entries
D008654 Mesothelioma A tumor derived from mesothelial tissue (peritoneum, pleura, pericardium). It appears as broad sheets of cells, with some regions containing spindle-shaped, sarcoma-like cells and other regions showing adenomatous patterns. Pleural mesotheliomas have been linked to exposure to asbestos. (Dorland, 27th ed) Mesotheliomas
D010994 Pleura The thin serous membrane enveloping the lungs (LUNG) and lining the THORACIC CAVITY. Pleura consist of two layers, the inner visceral pleura lying next to the pulmonary parenchyma and the outer parietal pleura. Between the two layers is the PLEURAL CAVITY which contains a thin film of liquid. Parietal Pleura,Visceral Pleura,Pleura, Parietal,Pleura, Visceral
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D001052 Apoferritins The protein components of ferritins. Apoferritins are shell-like structures containing nanocavities and ferroxidase activities. Apoferritin shells are composed of 24 subunits, heteropolymers in vertebrates and homopolymers in bacteria. In vertebrates, there are two types of subunits, light chain and heavy chain. The heavy chain contains the ferroxidase activity. Apoferritin,Ferritin H Subunit,Ferritin Heavy Chain,Ferritin L Subunit,Ferritin Light Chain,H Ferritin,H-Ferritin,L-Ferritin,Ferritin, H,H Subunit, Ferritin,Heavy Chain, Ferritin,L Ferritin,L Subunit, Ferritin,Light Chain, Ferritin
D001194 Asbestos Asbestos. Fibrous incombustible mineral composed of magnesium and calcium silicates with or without other elements. It is relatively inert chemically and used in thermal insulation and fireproofing. Inhalation of dust causes asbestosis and later lung and gastrointestinal neoplasms.
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
September 2000, American journal of respiratory cell and molecular biology,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
March 2024, British poultry science,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
January 2011, American journal of nephrology,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
January 2014, Oxidative medicine and cellular longevity,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
September 2023, Proceedings of the National Academy of Sciences of the United States of America,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
January 2005, Medecine sciences : M/S,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
March 1994, American journal of respiratory and critical care medicine,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
September 2011, American journal of respiratory cell and molecular biology,
Winn Aung, and Sumitaka Hasegawa, and Takako Furukawa, and Tsuneo Saga
May 1989, The American journal of pathology,
Copied contents to your clipboard!