Structure of the agonist-binding site of the nicotinic acetylcholine receptor. [3H]acetylcholine mustard identifies residues in the cation-binding subsite. 1991

J B Cohen, and S D Sharp, and W S Liu
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.

To characterize the structure of the agonist-binding site of the Torpedo nicotinic acetylcholine receptor (AChR), we have used [3H]acetylcholine mustard [( 3H]AChM), a reactive analog of acetylcholine, to identify residues contributing to the cation-binding subsite. Reaction of [3H]AChM, in its aziridinium form, with AChR-rich membrane suspensions, resulted initially in reversible, high affinity binding (K approximately 0.3 microM) followed by slow alkylation of the acetylcholine-binding site. Incorporation of label into AChR alpha-subunit was inhibited by agonists and competitive antagonists, but not by noncompetitive antagonists, and reaction with 3 microM [3H]AChM for 2 h resulted in specific alkylation of 0.6% of alpha-subunits. Within the alpha-subunit, greater than 90% of specific incorporation was contained within an 18-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Val-46 and containing N-linked carbohydrate. To identify sites of specific alkylation, [3H]AChM-labeled alpha-subunit was digested with trypsin, and the digests were fractionated by reverse phase high pressure liquid chromatography. Specifically labeled material was recovered within a single peak containing a peptide extending from Leu-80 to Lys-107. NH2-terminal amino acid sequencing revealed specific release of 3H in cycle 14 corresponding to alpha-subunit Tyr-93. Identification of Tyr-93 as the site of alkylation was confirmed by radiosequence analysis utilizing o-phthalaldehyde to establish that the released 3H originated from a peptide containing prolines at residues 2 and 9. Because [3H]AChM contains as its reactive group a positively charged quaternary aziridinium, alpha-subunit Tyr-93 is identified as contributing to the cation-binding domain of the AChR agonist-binding site. The selective reaction of [3H]AChM with tyrosyl rather than acidic side chains indicates the importance of aromatic interactions for the binding of the quaternary ammonium group, and the lack of reaction with the tyrosyl or acidic side chains within alpha 190-200 emphasizes the selective orientation of acetylcholine within its binding site.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J B Cohen, and S D Sharp, and W S Liu
April 1996, Journal of neuroscience research,
J B Cohen, and S D Sharp, and W S Liu
April 1984, Fundamental and applied toxicology : official journal of the Society of Toxicology,
J B Cohen, and S D Sharp, and W S Liu
June 1992, Neurochemistry international,
J B Cohen, and S D Sharp, and W S Liu
January 1993, Journal of receptor research,
J B Cohen, and S D Sharp, and W S Liu
December 1987, Neuroscience letters,
Copied contents to your clipboard!