A noninvasive method of estimating mean pulmonary artery pressure in the pneumatic total artificial heart. 1991

M J Vonesh, and R C Cork, and K C Mylrea
Department of Cardiology, Northwestern University Medical School, Evanston, IL.

Accurate hemodynamic monitoring is essential for the clinical management of the recipient of a total artificial heart (TAH). The high incidence of pulmonary congestive disorders in this population complicates this already formidable task. Lack of diagnostic pulmonary artery pressure (PAP) information is recognized as a fundamental source of these problems. Because conventional methods of obtaining hemodynamic information are difficult to implement in TAH recipients, improvement of TAH case management depends on the development of innovative monitoring strategies. Noninvasive monitoring techniques have been developed for three (right atrial pressure, left atrial pressure, and aortic pressure) of the four auxiliary circulatory pressures used to quantify hemodynamic performance. Development of the fourth, for PAP, was the subject of this work. We developed a noninvasive, in vitro method of estimating mean PAP in the Jarvik-7 TAH (Symbion, Inc, Salt Lake City, UT) recipient. This information was obtained by analyzing the relationship between the pneumatic right drive pressure (RDP) and PAP waveforms produced by a Jarvik-7 (70 ml) connected to a Donovan mock circulation and driven by a Utahdrive System IIIe Controller (Symbion, Inc, Salt Lake City, UT). Total artificial heart driver parameters (i.e., heart rate, percent systole, and vacuum) were manipulated to produce a range of ventricular filling volumes (FV), from 40 to 60 ml, for three distinct states of the pulmonary vasculature: hypotensive, normal, and hypertensive. A unique multiple-linear regression equation was derived for each FV from the RDP-PAP relationship exhibited under these conditions. Comparison of computed estimates of PAP with actual measurements showed overall average correlations of greater than 0.92, with a standard error of the estimate of less than 1.9 mm Hg. The mean difference between actual and computed PAP measurements was -0.03 +/- 2.0 Hg. Estimations were accurate within 8.5% of true PAP values. Additional experimentation revealed that while the RDP-PAP relationships are dependent on FV, they are independent of the manner in which FV was obtained. Estimates proved useful over the clinical operating range of the pneumatic heart driver, as well as over the normal physiologic range of PAP in the human. This method is readily applicable to a computer-based monitoring implementation, although its effectiveness needs to be demonstrated in vivo.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002306 Cardiac Volume The volume of the HEART, usually relating to the volume of BLOOD contained within it at various periods of the cardiac cycle. The amount of blood ejected from a ventricle at each beat is STROKE VOLUME. Heart Volume,Cardiac Volumes,Heart Volumes,Volume, Cardiac,Volume, Heart,Volumes, Cardiac,Volumes, Heart
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006354 Heart, Artificial A pumping mechanism that duplicates the output, rate, and blood pressure of the natural heart. It may replace the function of the entire heart or a portion of it, and may be an intracorporeal, extracorporeal, or paracorporeal heart. (Dorland, 28th ed) Artificial Heart,Artificial Hearts,Hearts, Artificial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M J Vonesh, and R C Cork, and K C Mylrea
September 1976, Japanese circulation journal,
M J Vonesh, and R C Cork, and K C Mylrea
November 2008, Chest,
M J Vonesh, and R C Cork, and K C Mylrea
May 2013, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography,
M J Vonesh, and R C Cork, and K C Mylrea
January 2018, ASAIO journal (American Society for Artificial Internal Organs : 1992),
M J Vonesh, and R C Cork, and K C Mylrea
July 2005, Journal of magnetic resonance imaging : JMRI,
M J Vonesh, and R C Cork, and K C Mylrea
May 1988, The International journal of artificial organs,
M J Vonesh, and R C Cork, and K C Mylrea
January 1987, Kardiologia polska,
M J Vonesh, and R C Cork, and K C Mylrea
January 2022, Frontiers in cardiovascular medicine,
Copied contents to your clipboard!