Myelin sheath survival following axonal degeneration in doubly myelinated nerve fibers. 1991

G J Kidd, and J W Heath
Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia.

Axonal contact plays a critical role in initiating myelin formation by Schwann cells. However, recent studies of "double myelination" have indicated that myelin maintenance continues in Schwann cells completely displaced from physical contact with the axon. This raises the possibility either that diffusible trophic factors are produced by the axon, or that the axon is not required for myelin maintenance by these displaced Schwann cells. To test these hypotheses, the axons involved in double myelination in the mouse superior cervical ganglion (SCG) were transected surgically by a transganglionic lesion. The inferior pole of the SCG was resected to limit axonal regeneration. This method produced a typical Wallerian pattern of degeneration in the superior pole, without compromising the blood supply or introducing nonspecific trauma. EM analysis at 1 and 5 d postoperatively showed that initially the axon degenerated, followed by breakdown of the inner myelin sheath. In those configurations where the outer Schwann cell was only partly displaced from the axon, the outer myelin sheath degenerated simultaneously. However, in completely displaced internodes the outer sheath survived degeneration of the axon and inner sheath. Outer internodes remained intact for at least 5 weeks after transection (the longest time point in this study), at which time they enclosed reorganized processes of the inner Schwann cells, their basal lamina, and numerous collagen fibrils. Axonal regeneration within surviving outer internodes was rare and was characterized by the development of typical Remak ensheathment by the inner Schwann cells. We conclude that in the mouse SCG, myelin maintenance does not depend on the continued presence of the axon. These data suggest further that myelin breakdown in Wallerian degeneration may be initiated by mechanisms other than absence of a viable axon.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G J Kidd, and J W Heath
January 1977, Proceedings of the National Academy of Sciences of the United States of America,
G J Kidd, and J W Heath
November 1977, Journal of neuropathology and experimental neurology,
G J Kidd, and J W Heath
January 1958, Trudy Leningradskogo sanitarno-gigienicheskogo meditsinskogo instituta,
G J Kidd, and J W Heath
May 1988, Bratislavske lekarske listy,
G J Kidd, and J W Heath
January 1977, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G J Kidd, and J W Heath
November 1970, The American journal of physiology,
G J Kidd, and J W Heath
August 1980, Arkhiv anatomii, gistologii i embriologii,
G J Kidd, and J W Heath
June 2011, Journal francais d'ophtalmologie,
G J Kidd, and J W Heath
January 1981, American journal of ophthalmology,
Copied contents to your clipboard!