Conformational changes in human red cell membrane proteins induced by sugar binding. 1991

A Janoshazi, and G Kifor, and A K Solomon
Biophysical Laboratory, Harvard Medical School, Boston, Massachusetts 02115.

We have previously shown that the human red cell glucose transport protein and the anion exchange protein, band 3, are in close enough contact that information can be transmitted from the glucose transport protein to band 3. The present experiments were designed to show whether information could be transferred in the reverse direction, using changes in tryptophan fluorescence to report on the conformation of the glucose transport protein. To see whether tryptophan fluorescence changes could be attributed to the glucose transport protein, we based our experiments on procedures used by Helgerson and Carruthers [Helgerson, A. L., Carruthers, A., (1987) J. Biol. Chem. 262:5464-5475] to displace cytochalasin B (CB), the specific D-glucose transport inhibitor, from its binding site on the inside face of the glucose transport protein, and we showed that these procedures modified tryptophan fluorescence. Addition of 75 mM maltose, a nontransportable disaccharide which also displaces CB, caused a time-dependent biphasic enhancement of tryptophan fluorescence in fresh red cells, which was modulated by the specific anion exchange inhibitor, DBDS (4,4'-dibenzamido-2,2'-stilbene disulfonate). In a study of nine additional disaccharides, we found that both biphasic kinetics and DBDS effects depended upon specific disaccharide conformation, indicating that these two effects could be attributed to a site sensitive to sugar conformation. Long term (800 sec) experiments revealed that maltose binding (+/- DBDS) caused a sustained damped anharmonic oscillation extending over the entire 800 sec observation period. Mathematical analysis of the temperature dependence of these oscillations showed that 2 microM DBDS increased the damping term activation energy, 9.5 +/- 2.8 kcal mol-1 deg-1, by a factor of four to 39.7 +/- 5.1 kcal mol-1 deg-1, providing strong support for the view that signalling between the glucose transport protein and band 3 goes in both directions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.

Related Publications

A Janoshazi, and G Kifor, and A K Solomon
January 1990, Pharmacology & toxicology,
A Janoshazi, and G Kifor, and A K Solomon
January 2014, Colloids and surfaces. B, Biointerfaces,
A Janoshazi, and G Kifor, and A K Solomon
August 1977, The Journal of biological chemistry,
A Janoshazi, and G Kifor, and A K Solomon
March 1987, Biochemical and biophysical research communications,
A Janoshazi, and G Kifor, and A K Solomon
May 1982, FEBS letters,
A Janoshazi, and G Kifor, and A K Solomon
October 2004, The Journal of biological chemistry,
A Janoshazi, and G Kifor, and A K Solomon
December 2006, Biophysical journal,
A Janoshazi, and G Kifor, and A K Solomon
September 1972, Biochimica et biophysica acta,
A Janoshazi, and G Kifor, and A K Solomon
April 2011, The Journal of physiology,
Copied contents to your clipboard!