Pharmacokinetic interactions of flunixin meglumine and enrofloxacin in ICR mice. 2007

Tomoe Ogino, and Toshiro Arai
National Veterinary Assay Laboratory, Tokura, Kokubunji, Tokyo, Japan.

We examined the pharmacokinetic interactions of enrofloxacin and flunixin in male ICR mice that were subcutaneously (SC) administered with both or either one of the drugs. The experiments were performed on the following three groups: flunixin alone (2 mg/kg, SC), combination of flunixin (2 mg/kg, SC) and enrofloxacin (10 mg/kg, SC), and enrofloxacin alone (10 mg/kg, SC). Blood samples were collected at 5, 15 and 30 min, and 1, 2, 3, 4, 5 and 6 h after the drug administration, and the pharmacokinetic parameters of flunixin and enrofloxacin were evaluated from the plasma drug concentrations. Significant changes were detected in the pharmacokinetics of flunixin following its coadministration with enrofloxacin. Coadministration of flunixin and enrofloxacin resulted in a 41% increase of the area under the curve (AUC) and a 53% extension of the terminal half-life of flunixin; moreover, flunixin attained the maximum plasma drug concentration 2.75 times faster than when administered alone. The terminal rate constant and the maximum plasma drug concentration showed significant decreases of 34% and 33%, respectively, following the coadministration of enrofloxacin and flunixin as compared to those following the administration of flunixin alone. In contrast, no significant difference in the pharmacokinetics of enrofloxacin was detected following its coadministration with flunixin, as compared to those following the administration of enrofloxacin alone. Following the administration of enrofloxacin alone or its coadministration with flunixin, the plasma level of ciprofloxacin, the metabolite of enrofloxacin, was very low or undetectable. In conclusion, the pharmacokinetics of flunixin in ICR mice are altered by the coadministration of flunixin and enrofloxacin.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D011448 Prostaglandin Antagonists Compounds that inhibit the action of prostaglandins. Prostaglandin Inhibitors,Antagonists, Prostaglandin,Inhibitors, Prostaglandin,Prostaglandin Antagonist,Prostaglandin Inhibitor,Antagonist, Prostaglandin,Inhibitor, Prostaglandin
D003002 Clonixin Anti-inflammatory analgesic. CBA-93626,Sch-10304,CBA 93626,CBA93626,Sch 10304,Sch10304
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000077422 Enrofloxacin A fluoroquinolone antibacterial and antimycoplasma agent that is used in veterinary practice. Bay Vp 2674,Bay-Vp-2674,Baytril,Endrofloxicin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Tomoe Ogino, and Toshiro Arai
July 2005, American journal of veterinary research,
Tomoe Ogino, and Toshiro Arai
February 2013, Journal of veterinary pharmacology and therapeutics,
Tomoe Ogino, and Toshiro Arai
December 2014, Journal of veterinary pharmacology and therapeutics,
Tomoe Ogino, and Toshiro Arai
January 1996, Veterinary research communications,
Tomoe Ogino, and Toshiro Arai
August 1998, Journal of veterinary pharmacology and therapeutics,
Tomoe Ogino, and Toshiro Arai
September 1999, DTW. Deutsche tierarztliche Wochenschrift,
Tomoe Ogino, and Toshiro Arai
November 1992, The Veterinary record,
Tomoe Ogino, and Toshiro Arai
January 1985, American journal of veterinary research,
Copied contents to your clipboard!