Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation. 2007

Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China.

The 14-3-3 protein, highly conserved in all eukaryotic cells, is an important regulatory protein. It plays an important role in the growth, amplification, apoptosis, signal transduction, and other crucial life activities of cells. A cDNA encoding a putative 14-3-3 protein was isolated from cotton fiber cDNA library. The cDNA, designated as Gh14-3-3L (Gossypium hirsutum 14-3-3-like), is 1,029 bp in length (including a 762 bp long open reading frame and 5'-/3'-untranslated regions) and deduced a protein with 253 amino acids. The Gh14-3-3L shares higher homology with the known plant 14-3-3 proteins, and possesses the basic structure of 14-3-3 proteins: one dimeric domain, one phosphoralated-serine rich motif, four CC domains, and one EF Hand motif. Northern blotting analysis showed that Gh14-3-3L was predominantly expressed during early fiber development, and reached to the peak of expression in 10 days post anthers (DPA) fiber cells, suggesting that the gene may be involved in regulating fiber elongation. The gene is also expressed at higher level in both ovule and petal, but displays lower or undetectable level of activity in other tissues of cotton.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003368 Gossypium A plant genus of the family MALVACEAE. It is the source of COTTON FIBER; COTTONSEED OIL, which is used for cooking, and GOSSYPOL. The economically important cotton crop is a major user of agricultural PESTICIDES. Cotton Plant,Cotton Plants,Gossypiums,Plant, Cotton,Plants, Cotton
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D015723 Gene Library A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences. DNA Library,cDNA Library,DNA Libraries,Gene Libraries,Libraries, DNA,Libraries, Gene,Libraries, cDNA,Library, DNA,Library, Gene,Library, cDNA,cDNA Libraries
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D048948 14-3-3 Proteins A large family of signal-transducing adaptor proteins present in wide variety of eukaryotes. They are PHOSPHOSERINE and PHOSPHOTHREONINE binding proteins involved in important cellular processes including SIGNAL TRANSDUCTION; CELL CYCLE control; APOPTOSIS; and cellular stress responses. 14-3-3 proteins function by interacting with other signal-transducing proteins and effecting changes in their enzymatic activity and subcellular localization. The name 14-3-3 derives from numerical designations used in the original fractionation patterns of the proteins. 14-3-3 Protein,14-3-3 Protein, beta Isoform,14-3-3 Protein, epsilon Isoform,14-3-3 Protein, eta Isoform,14-3-3 Protein, gamma Isoform,14-3-3 Protein, tau Isoform,14-3-3 Protein, zeta Isoform,14-3-3 beta Protein,14-3-3 epsilon Protein,14-3-3 eta Protein,14-3-3 gamma Protein,14-3-3 tau Protein,14-3-3 zeta Protein,14-3-3beta Protein,14-3-3epsilon Protein,14-3-3eta Protein,14-3-3gamma Protein,14-3-3tau Protein,14-3-3zeta Protein,Brain 14-3-3 Protein,Protein 14-3-3,14 3 3 Protein,14 3 3 Protein, beta Isoform,14 3 3 Protein, epsilon Isoform,14 3 3 Protein, eta Isoform,14 3 3 Protein, gamma Isoform,14 3 3 Protein, tau Isoform,14 3 3 Protein, zeta Isoform,14 3 3 Proteins,14 3 3 beta Protein,14 3 3 epsilon Protein,14 3 3 eta Protein,14 3 3 gamma Protein,14 3 3 tau Protein,14 3 3 zeta Protein,14 3 3beta Protein,14 3 3epsilon Protein,14 3 3eta Protein,14 3 3gamma Protein,14 3 3tau Protein,14 3 3zeta Protein,14-3-3 Protein, Brain,Brain 14 3 3 Protein,Protein, 14-3-3tau,eta Protein, 14-3-3
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
October 2002, Plant physiology,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
October 2010, Molecular biology reports,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
July 2010, Journal of experimental botany,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
January 2007, Journal of experimental botany,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
December 1998, Plant & cell physiology,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
January 2013, PloS one,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
March 2005, The Plant cell,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
February 1991, FEBS letters,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
December 2001, Bioscience, biotechnology, and biochemistry,
Haiyan Shi, and Xiulan Wang, and Dengdi Li, and Wenkai Tang, and Hong Wang, and Wenliang Xu, and Xuebao Li
August 2011, Acta biochimica et biophysica Sinica,
Copied contents to your clipboard!