Current data on the diversity of plant lectins and their functional importance for plants, caused primarily by their capacity to link carbohydrate ligands specifically and convertibly, are reviewed. For instance, the role of plant lectins in the recognition of alien organisms and in the adaptation of plants to various stress-induced effects is discussed. In addition to centres of specific affinity to carbohydrates, plant lectins are characterized by the presence of sites responsible for hydrophobic interactions with non-carbohydrate molecules. These sites link to plant hormones, proteins, and other metabolites, thus participating in the regulation of metabolic processes controlling growth, development, and differentiation in plants. The structure and biological properties of ribosome-inactivating proteins having and not having lectin activity are discussed, as well as their role in plant protection from pests and pathogens. Current data on the assumed functions of the independent groups of plant lectins with specific endogenic role are given. These include chitin-specific lectins synthesized in phloem, which are capable of forming protein-protein and RNA-protein complexes and translocating via vessels, which thus play their specific intra- or intercellular interactions, processes of growth, development, and protection of plants. Other groups of plant lectins, induced by jasmonate, such as Nictaba (Nicotiana tabaccum agglutinin), and cereal lectins related to jacalin, which are localised in the cytoplasm and nucleus, probably play regulatory role in the formation of stress response in plants. The structure and currently discussed functions of wheat germ agglutinin, a typical representative of cereal lectins, are analysed in detail.