Localization of the gene transcripts of 11 beta-hydroxylase and aldosterone synthase in the rat adrenal cortex by in situ hybridization. 1991

M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
Department of Anatomy, Osaka University Medical School, Japan.

Using in situ hybridization, localization of the gene transcripts of 11 beta-hydroxylase and aldosterone synthase was investigated in order to clarify the sites for the synthesis of corticosterone (glucocorticoid) and aldosterone (mineralocorticoid) in the rat adrenal cortex. The gene transcript of 11 beta-hydroxylase was localized in all the endocrine cells of the entire adrenal cortex, while that of aldosterone synthase was exclusively confined in zona glomerulosa cells. These results represent that every endocrine cell of all the cortical zones synthesizes 11 beta-hydroxylase which converts 11-deoxycorticosterone to corticosterone, and only glomerulosa cells synthesize aldosterone synthase which produces aldosterone from corticosterone. Thus it is clearly shown that zona glomerulosa cells synthesize mineralocorticoid, while zona fasciculata as well as reticularis cells produce glucocorticoid.

UI MeSH Term Description Entries
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid
D013252 Steroid 11-beta-Hydroxylase A mitochondrial cytochrome P450 enzyme that catalyzes the 11-beta-hydroxylation of steroids in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11B1 gene, is important in the synthesis of CORTICOSTERONE and HYDROCORTISONE. Defects in CYP11B1 cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL). CYP11B1,Cytochrome P-450 CYP11B1,Cytochrome P-450(11 beta),Steroid 11-beta-Monooxygenase,11 beta-Hydroxylase,CYP 11B1,Cytochrome P450 11B1,Steroid 11 Hydroxylase,Steroid 11-Hydroxylase,Steroid-11-Hydroxylase,11 beta Hydroxylase,Cytochrome P 450 CYP11B1,Steroid 11 beta Hydroxylase,Steroid 11 beta Monooxygenase

Related Publications

M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
November 1993, The Journal of endocrinology,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
September 1995, The Journal of steroid biochemistry and molecular biology,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
February 1993, Journal of biochemistry,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
March 1992, The Journal of steroid biochemistry and molecular biology,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
January 1997, Journal of the Society for Gynecologic Investigation,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
January 1995, Endocrine research,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
August 1993, Clinical endocrinology,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
December 1991, European journal of biochemistry,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
January 1992, Nature,
M Yabu, and T Senda, and Y Nonaka, and N Matsukawa, and M Okamoto, and H Fujita
August 1970, Endocrinology,
Copied contents to your clipboard!