Neuromuscular organization of the buccal system in Aplysia californica. 1991

M L Scott, and C K Govind, and M D Kirk
Division of Biological Sciences, University of Missouri-Columbia 65211.

The intrinsic muscles and peripheral nerves in the buccal system of the sea hare Aplysia californica were studied to build a foundation on which to base future investigations of feeding in intact animals. A detailed description of the bilaterally paired intrinsic muscles is given identifying previously unreported muscles. Each of the six buccal nerves (n1-n6) and the cerebrobuccal connective (CBC) have been characterized in several respects. Cell bodies in the buccal ganglion with projections into each of the buccal nerves have been identified via the cobalt backfilling technique. All nerves contain axons of cell bodies in the ipsilateral as well as the contralateral ganglia. For each nerve, there is a consistent pattern in the distribution of cell bodies in the paired ganglia with the number of cell bodies in the contralateral ganglion being less than or equal to the number in the ipsilateral ganglion. Although the total number of backfilled cell bodies varies among the nerves, their size ranges are similar with the majority being small. Nerves 1, 2, 4, 5, and 6 provide motor innervation to the intrinsic buccal muscles in varying degrees with nerve 4 supplying all the intrinsic muscles; nerve 2 supplies only one. The axon composition of each nerve was scrutinized and revealed large numbers of axon profiles, the majority of which were less than 2 microns in diameter. The present study provides a framework for analysis of feeding behavior in Aplysia californica.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002610 Cheek The part of the face that is below the eye and to the side of the nose and mouth. Bucca,Buccas,Cheeks
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

M L Scott, and C K Govind, and M D Kirk
October 1994, Journal of neurophysiology,
M L Scott, and C K Govind, and M D Kirk
November 1979, Federation proceedings,
M L Scott, and C K Govind, and M D Kirk
May 1998, The Journal of experimental biology,
M L Scott, and C K Govind, and M D Kirk
August 1988, Brain research,
M L Scott, and C K Govind, and M D Kirk
February 1997, The Journal of experimental biology,
M L Scott, and C K Govind, and M D Kirk
September 1975, Cell,
M L Scott, and C K Govind, and M D Kirk
January 1977, Proceedings of the National Academy of Sciences of the United States of America,
M L Scott, and C K Govind, and M D Kirk
April 2003, Neuroscience letters,
M L Scott, and C K Govind, and M D Kirk
July 1989, Journal of neurobiology,
M L Scott, and C K Govind, and M D Kirk
March 1991, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
Copied contents to your clipboard!