A novel restriction-modification system from Xanthomonas campestris pv. vesicatoria encodes a m4C-methyltransferase and a nonfunctional restriction endonuclease. 2007

Yu-Jen Yu, and Ming-Te Yang
Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.

A novel restriction-modification (R-M) system, designated as xveIIRM, from chromosomal DNA of the Xanthomonas campestris pv. vesicatoria strain 7-1 (Xcv7-1) was cloned and characterized. The xveIIRM genes involved in this R-M system are aligned in a tail-to-tail orientation and overlapped by 12 base pairs. XveII methyltransferase gene could encode a 299-amino acid protein (M.XveII) with an estimated mass of 33.7 kDa and was classified to be a member of beta-class of m4C-MTase. M.XveII methylates the second cytosine of the 5'-CCCGGG-3' recognition sequence. The predicted amino acid sequence of the intact XveII endonuclease shared 41.9% identity with SmaI. However, a premature TAA translation termination codon was found in the open reading frame of xveIIR and expected to encode an 18.3 kDa truncated protein. The sequence data are consistent with observation of this study that no SmaI-like restriction activity could be detected in the cell extract of Xcv7-1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II
D015257 DNA-Cytosine Methylases Methylases that are specific for CYTOSINE residues found on DNA. Cytosine-Specific DNA Methylase,DNA Modification Methylases (Cytosine-Specific),DNA-Cytosine Methylase,Modification Methylases (Cytosine-Specific),Site-Specific DNA Methyltransferase (Cytosine-Specific),Site-Specific Methyltransferases (Cytosine-Specific),Cytosine-Specific DNA Methylases,DNA Modification Methylases Cytosine Specific,Modification Methylases (Cytosine Specific),Site Specific Methyltransferases (Cytosine Specific),Cytosine Specific DNA Methylase,Cytosine Specific DNA Methylases,DNA Cytosine Methylase,DNA Cytosine Methylases,DNA Methylase, Cytosine-Specific,DNA Methylases, Cytosine-Specific,Methylase, Cytosine-Specific DNA,Methylase, DNA-Cytosine,Methylases, Cytosine-Specific DNA

Related Publications

Yu-Jen Yu, and Ming-Te Yang
January 1988, Molecular plant-microbe interactions : MPMI,
Yu-Jen Yu, and Ming-Te Yang
December 2003, Journal of bacteriology,
Yu-Jen Yu, and Ming-Te Yang
July 1990, Molecular & general genetics : MGG,
Yu-Jen Yu, and Ming-Te Yang
December 2005, Applied and environmental microbiology,
Yu-Jen Yu, and Ming-Te Yang
January 1990, Applied and environmental microbiology,
Yu-Jen Yu, and Ming-Te Yang
May 2007, Molecular plant-microbe interactions : MPMI,
Copied contents to your clipboard!