Silencing of endo-exonuclease expression sensitizes mouse B16F10 melanoma cells to DNA damaging agents. 2007

Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
Department of Oncology, Faculty of Medicine, McGill University, 845 Sherbrooke St., Montreal, QC, H3A 2T5, Canada.

We previously identified an endo-exonuclease that is highly expressed in cancer cells and plays an important role in DSB repair mechanisms. A small molecular compound pentamidine, which specifically inhibited nuclease activity of the isolated endo-exonuclease from yeast as well as from mammalian cells, was capable of sensitizing tumor cells to DNA damaging agents. In this study, we investigated the effect of precisely silencing the endo-exonuclease expression by small interfering RNA (siRNA) upon treatment with a variety of DNA damaging agents in mouse B16F10 melanoma cells. A maximum of 3.6 to approximately 4-fold reduction in endo-exonuclease mRNA expression was achieved, over a period of 48-72 h of post transfection with a concomitant reduction in protein expression (approximately 4-5 fold), resulting in a substantial reduction (approximately 45-50%) of the corresponding nuclease activity. Suppressed endo-exonuclease expression conferred significant decrease in cell survival, ranging from approximately 30 to approximately 50% cell killing, in presence of DNA damaging drugs methyl methane sulfonate (MMS), cisplatin, 5-fluoro uracil (5-FU) and gamma-irradiation but not at varying dosages of ultra violet (UV) radiation. The data strongly support a role for the endo-exonuclease in repairing DNA damages, induced by MMS, cisplatin, 5-FU and gamma irradiation but not by UV radiation. The results presented in this study suggest that the endo-exonuclease siRNA could be useful as a therapeutic tool in targeting the endo-exonuclease in cancer therapy.

UI MeSH Term Description Entries
D008546 Melanoma, Experimental Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA. B16 Melanoma,Melanoma, B16,Melanoma, Cloudman S91,Melanoma, Harding-Passey,Experimental Melanoma,Experimental Melanomas,Harding Passey Melanoma,Melanomas, Experimental,B16 Melanomas,Cloudman S91 Melanoma,Harding-Passey Melanoma,Melanoma, Harding Passey,Melanomas, B16,S91 Melanoma, Cloudman
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D005472 Fluorouracil A pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the THYMIDYLATE SYNTHETASE conversion of deoxyuridylic acid to thymidylic acid. 5-FU,5-FU Lederle,5-FU Medac,5-Fluorouracil,5-Fluorouracil-Biosyn,5-HU Hexal,5FU,Adrucil,Carac,Efudex,Efudix,Fluoro-Uracile ICN,Fluoroplex,Fluorouracil Mononitrate,Fluorouracil Monopotassium Salt,Fluorouracil Monosodium Salt,Fluorouracil Potassium Salt,Fluorouracil-GRY,Fluorouracile Dakota,Fluorouracilo Ferrer Far,Fluoruracil,Fluracedyl,Flurodex,Haemato-FU,Neofluor,Onkofluor,Ribofluor,5 FU Lederle,5 FU Medac,5 Fluorouracil,5 Fluorouracil Biosyn,5 HU Hexal,Dakota, Fluorouracile,Fluoro Uracile ICN,Fluorouracil GRY,Haemato FU
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear

Related Publications

Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
December 2009, Current cancer drug targets,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
April 1999, Mutation research,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
July 2018, Oncotarget,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
September 2015, Clinical cancer research : an official journal of the American Association for Cancer Research,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
September 2012, Proceedings of the National Academy of Sciences of the United States of America,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
January 2012, PloS one,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
December 2013, Biochimica et biophysica acta,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
April 2000, Oncogene,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
April 2018, Journal of virology,
Sibgat A Choudhury, and Paul Kauler, and Slobodan Devic, and Terry Y-K Chow
October 2016, Oncology reports,
Copied contents to your clipboard!