Molecular detection of BCR/ABL fusion gene in Saudi acute lymphoblastic leukemia patients. 2006

Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
Department of Haematology, King Saud University, KSA. aelsissy@yahoo.com

BACKGROUND Molecular cytogenetics is becoming one of the most useful tools targeting some genes which are generally considered to lead to leukemic transformation (as well as for numerical abnormalities). A fraction of acute lymphoblastic leukemia (ALL) cases carry the translocation t(9;22) (q34;q11.2) which juxtaposes the ABL proto-oncogene to the BCR gene generating a chimeric gene, BCR/ABL. This aberration is more frequent in adult ALL (20%-40%) than in pediatric ALL (<5%), and predicts poor clinical outcome. AIM OF OUR WORK: Is to study BCR/ABL fusion gene in ALL cases using fluorescent in situ hybridization. METHODS Twenty newly diagnosed ALL patients, 16 adult and 4 paediatric cases, were included in the study, 11 cases (55%) were of precursor B phenotype, 8 cases (40%) belonged to T lineage, while one case was biphenotypic expressing mainly precursor B cell markers tether with CD13, CD33, CD117, Detection of BCR/ABL fusion gene was done using interphase FISH technique and was confirmed molecularly using the RT-PCR technique. RESULTS BCR/ABL fusion gene was negative in all the examined cases, yet abnormality involving 9q34, ABL gene, either by addition or deletion was detected in three cases (15%). Two of these cases were associated with BCR gene extra copies (three and four copies, respectively). CONCLUSIONS This may reflect the frequency of association of ABL gene and BCR gene abnormality in our cases, and that absence of fusion gene BCR/ABL does not exclude their role in the leukomogenic process, yet a larger study is required to confirm and detect the prevalence of these gene disturbances in ALL and their association.

UI MeSH Term Description Entries
D008297 Male Males
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000090063 Proto-Oncogene Mas A protein that is encoded by the MAS1 gene. It is a receptor for ANGIOTENSIN 1-7 and acts as an antagonist of ANGIOTENSIN-2 TYPE 1 RECEPTOR. C-Mas Protein,II-Proto-Oncogene Proteins, Cellular,Mas Protein,Mas1 Protein,Proto-Oncogene Protein Mas,Proto-Oncogene Proteins C-Mas-1,C Mas Protein,C-Mas-1, Proto-Oncogene Proteins,Cellular II-Proto-Oncogene Proteins,II Proto Oncogene Proteins, Cellular,Mas, Proto-Oncogene,Protein Mas, Proto-Oncogene,Protein, C-Mas,Protein, Mas,Protein, Mas1,Proteins, Cellular II-Proto-Oncogene,Proto Oncogene Mas,Proto Oncogene Proteins C Mas 1
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000944 Antigens, Differentiation, B-Lymphocyte Membrane antigens associated with maturation stages of B-lymphocytes, often expressed in tumors of B-cell origin. Antigens, Differentiation, B-Cell,B-Cell Differentiation Antigens,B-Lymphocyte Differentiation Antigens,Blast-2 Antigen, B-Cell,Differentiation Antigens, B-Cell,Differentiation Antigens, B-Lymphocyte,Leu Antigens, B-Lymphocyte,Plasma Cell Antigens PC-1,Antigens, Differentiation, B Lymphocyte,Antigens, Plasma Cell, PC-1,B-Cell Blast-2 Antigen,Antigen, B-Cell Blast-2,Antigens, B-Cell Differentiation,Antigens, B-Lymphocyte Differentiation,Antigens, B-Lymphocyte Leu,B Cell Blast 2 Antigen,B Cell Differentiation Antigens,B Lymphocyte Differentiation Antigens,B-Lymphocyte Leu Antigens,Blast 2 Antigen, B Cell,Differentiation Antigens, B Cell,Differentiation Antigens, B Lymphocyte,Leu Antigens, B Lymphocyte,Plasma Cell Antigens PC 1
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016044 Fusion Proteins, bcr-abl Translation products of a fusion gene derived from CHROMOSOMAL TRANSLOCATION of C-ABL GENES to the genetic locus of the breakpoint cluster region gene on chromosome 22. Several different variants of the bcr-abl fusion proteins occur depending upon the precise location of the chromosomal breakpoint. These variants can be associated with distinct subtypes of leukemias such as PRECURSOR CELL LYMPHOBLASTIC LEUKEMIA-LYMPHOMA; LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE; and NEUTROPHILIC LEUKEMIA, CHRONIC. Oncogene Protein p190(bcr-abl),Oncogene Protein p210(bcr-abl),bcr-abl Fusion Protein,bcr-abl Fusion Proteins,Bcr-Abl Tyrosine Kinase,Oncogene Protein p185(bcr-abl),Oncogene Protein p230(bcr-abl),p185(bcr-abl) Fusion Proteins,p190(bcr-abl) Fusion Proteins,p210(bcr-abl) Fusion Proteins,p230(bcr-abl) Fusion Proteins,Bcr Abl Tyrosine Kinase,Fusion Protein, bcr-abl,Fusion Proteins, bcr abl,Kinase, Bcr-Abl Tyrosine,Protein, bcr-abl Fusion,Tyrosine Kinase, Bcr-Abl,bcr abl Fusion Protein,bcr abl Fusion Proteins
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D054198 Precursor Cell Lymphoblastic Leukemia-Lymphoma A neoplasm characterized by abnormalities of the lymphoid cell precursors leading to excessive lymphoblasts in the marrow and other organs. It is the most common cancer in children and accounts for the vast majority of all childhood leukemias. Leukemia, Lymphoblastic,Leukemia, Lymphoid, Acute,Lymphoblastic Leukemia,Lymphoblastic Lymphoma,Lymphocytic Leukemia, Acute,Lymphoma, Lymphoblastic,ALL, Childhood,Acute Lymphoid Leukemia,Leukemia, Acute Lymphoblastic,Leukemia, Lymphoblastic, Acute,Leukemia, Lymphoblastic, Acute, L1,Leukemia, Lymphoblastic, Acute, L2,Leukemia, Lymphoblastic, Acute, Philadelphia-Positive,Leukemia, Lymphocytic, Acute,Leukemia, Lymphocytic, Acute, L1,Leukemia, Lymphocytic, Acute, L2,Lymphoblastic Leukemia, Acute,Lymphoblastic Leukemia, Acute, Adult,Lymphoblastic Leukemia, Acute, Childhood,Lymphoblastic Leukemia, Acute, L1,Lymphoblastic Leukemia, Acute, L2,Lymphocytic Leukemia, L1,Lymphocytic Leukemia, L2,Acute Lymphoblastic Leukemia,Acute Lymphocytic Leukemia,Childhood ALL,L1 Lymphocytic Leukemia,L2 Lymphocytic Leukemia,Leukemia, Acute Lymphocytic,Leukemia, Acute Lymphoid,Leukemia, L1 Lymphocytic,Leukemia, L2 Lymphocytic,Lymphoid Leukemia, Acute,Precursor Cell Lymphoblastic Leukemia Lymphoma

Related Publications

Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
May 1993, Blood,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
October 2005, Cancer genetics and cytogenetics,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
January 1998, Leukemia research,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
October 1994, Leukemia,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
January 1998, Annals of hematology,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
April 1995, PCR methods and applications,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
November 2009, Journal of pediatric hematology/oncology,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
October 1993, Leukemia,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
February 2017, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
Azza El-Sissy, and May El-Mashari, and Wafaa Bassuni, and Aziza El-Swaayed
January 2015, Experimental hematology & oncology,
Copied contents to your clipboard!