Globus pallidus internal segment. 2007

Atsushi Nambu
Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan. nambu@nips.ac.jp

The internal segment of the globus pallidus (GP(i)) gathers many bits of information including movement-related activity from the striatum, external segment of the globus pallidus (GP(e)), and subthalamic nucleus (STN), and integrates them. The GP(i) receives rich GABAergic inputs from the striatum and GP(e), and gamma-aminobutyric acid (GABA) receptors are distributed in the GP(i) in a specific manner. Thus, inputs from the striatum and GP(e) may control GP(i) activity in a different way. The GP(i) finally conveys processed information outside the basal ganglia. Changes in GABAergic neurotransmission have been reported in movement disorders and suggested to play an important role in the pathophysiology of the symptoms.

UI MeSH Term Description Entries
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050485 GABA Plasma Membrane Transport Proteins A family of plasma membrane neurotransmitter transporter proteins that regulates extracellular levels of the inhibitory neurotransmitter GAMMA-AMINOBUTYRIC ACID. They differ from GABA RECEPTORS, which signal cellular responses to GAMMA-AMINOBUTYRIC ACID. They control GABA reuptake into PRESYNAPTIC TERMINALS in the CENTRAL NERVOUS SYSTEM through high-affinity sodium-dependent transport. GABA Transporter,Neurotransmitter Transport Proteins, GABA-Specific,Neurotransmitter Transporters, GABA-Specific,GABA Plasma Membrane Transporter Proteins,GABA Transporter 1,GABA Transporter 2,GABA Transporter 3,GABA Transporter 4,GABA Transporters,GAT-1 Transporter,GAT-2 Transporter,GAT-3 Transporter,GAT-4 Transporter,GAT1 Transporter,GAT2 Transporter,GAT3 Transporter,Gamma-Aminobutyric Acid Plasma Membrane Transport Proteins,GABA-Specific Neurotransmitter Transporters,GAT 1 Transporter,GAT 2 Transporter,GAT 3 Transporter,GAT 4 Transporter,Gamma Aminobutyric Acid Plasma Membrane Transport Proteins,Neurotransmitter Transport Proteins, GABA Specific,Neurotransmitter Transporters, GABA Specific,Transporter 2, GABA,Transporter, GABA,Transporter, GAT-2,Transporter, GAT-4,Transporter, GAT2,Transporters, GABA,Transporters, GABA-Specific Neurotransmitter
D018079 Receptors, GABA Cell-surface proteins that bind GAMMA-AMINOBUTYRIC ACID with high affinity and trigger changes that influence the behavior of cells. GABA-A receptors control chloride channels formed by the receptor complex itself. They are blocked by bicuculline and usually have modulatory sites sensitive to benzodiazepines and barbiturates. GABA-B receptors act through G-proteins on several effector systems, are insensitive to bicuculline, and have a high affinity for L-baclofen. GABA Receptors,Receptors, gamma-Aminobutyric Acid,gamma-Aminobutyric Acid Receptors,GABA Receptor,gamma-Aminobutyric Acid Receptor,Receptor, GABA,Receptor, gamma-Aminobutyric Acid,Receptors, gamma Aminobutyric Acid,gamma Aminobutyric Acid Receptor,gamma Aminobutyric Acid Receptors
Copied contents to your clipboard!