Freeze-thaw injury in erythrocytes of the freeze-tolerant wood frog, Rana sylvatica. 1991

J P Costanzo, and R E Lee
Department of Zoology, Miami University, Oxford, Ohio 45056.

Erythrocytes from the freeze-tolerant wood frog (Rana sylvatica) were subjected to in vitro tests of freeze tolerance, cryoprotection, and osmotic fragility. The responses of cells from frogs acclimated to 4 or 15 degrees C were similar. Erythrocytes that were frozen in saline hemolyzed at -4 degrees C or lower. The addition of high concentrations (150 and 1,500 mM) of glucose or glycerol, cryoprotectants produced naturally by freeze-tolerant frogs, significantly reduced cell injury at -8 degrees C, but concentrations of 1.5 or 15 mM were ineffective. Hemolysis was reduced by 94% with 1,500 mM glycerol and by 84% with 1,500 mM glucose; thus glycerol was the more effective cryoprotectant. Mean fragility values for frog erythrocytes incubated in hypertonic and hypotonic saline were 1,938 and 49 mosM, respectively. Survival in freeze tolerance and cryoprotection experiments was comparable for erythrocytes from frogs and humans, suggesting that these cells may respond similarly to freezing-related stresses. However, the breadth of osmotic tolerance, standardized for differences in isotonicity, was greater for frog erythrocytes than for human erythrocytes. Our data suggest that erythrocytes from R. sylvatica are adequately protected by glucose under natural conditions of freezing and thawing.

UI MeSH Term Description Entries
D008297 Male Males
D009996 Osmotic Fragility RED BLOOD CELL sensitivity to change in OSMOTIC PRESSURE. When exposed to a hypotonic concentration of sodium in a solution, red cells take in more water, swell until the capacity of the cell membrane is exceeded, and burst. Saline Fragility,Fragility, Osmotic,Fragility, Saline
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D003451 Cryoprotective Agents Substances that provide protection against the harmful effects of freezing temperatures. Cryoprotective Agent,Cryoprotective Effect,Cryoprotective Effects,Agent, Cryoprotective,Agents, Cryoprotective,Effect, Cryoprotective,Effects, Cryoprotective
D004905 Erythrocyte Aging The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days. Erythrocyte Survival,Aging, Erythrocyte,Survival, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Costanzo, and R E Lee
January 2018, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
J P Costanzo, and R E Lee
May 2012, Cell cycle (Georgetown, Tex.),
J P Costanzo, and R E Lee
July 2023, International journal of biological macromolecules,
J P Costanzo, and R E Lee
September 1996, The American journal of physiology,
J P Costanzo, and R E Lee
November 2016, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!