Assay of myosin light chain kinase activity by high-performance liquid chromatography using a synthetic peptide as substrate. 1991

S Nakanishi, and H Kase, and Y Matsuda
Tokyo Research Laboratories, Kyowa Hakko Kogyo Company Ltd., Japan.

The most popular method to determine the activity of myosin light chain kinase is to measure the radioactivity incorporated from [gamma-32P]ATP into phosphoryl-accepting substrates. In this paper, we report a new method for determination of myosin light chain kinase activity without using radioisotopes. Synthetic peptides and nonradiolabeled ATP were used as substrate, and the peptide substrate was phosphorylated by myosin light chain kinase purified from chicken gizzard. After terminating the reaction, the reaction mixture was directly injected into a reversed-phase HPLC column without pretreatment, separated with the isocratic solvent system of acetonitrile-H2O-trifluoroacetic acid, and monitored at 220 nm uv absorbance. The reaction rate was determined from the peak areas of phosphorylated and unphosphorylated peptides. One chromatographic separation was achieved within 9 min, and the analysis could be repeated successively more than 100 times without washing the column. Using this method, we measured the differential inhibition of myosin light chain kinase by various inhibitors. With the aid of an automatic injector, the HPLC method with synthetic peptide enables us to handle many samples quickly and is useful for screening new myosin light chain kinase inhibitors.

UI MeSH Term Description Entries
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

S Nakanishi, and H Kase, and Y Matsuda
July 1983, Journal of chromatography,
S Nakanishi, and H Kase, and Y Matsuda
March 1990, Biochemical and biophysical research communications,
S Nakanishi, and H Kase, and Y Matsuda
January 1991, Advances in experimental medicine and biology,
S Nakanishi, and H Kase, and Y Matsuda
February 1991, Biochemical and biophysical research communications,
S Nakanishi, and H Kase, and Y Matsuda
April 1995, The Journal of biological chemistry,
S Nakanishi, and H Kase, and Y Matsuda
October 1992, Clinica chimica acta; international journal of clinical chemistry,
S Nakanishi, and H Kase, and Y Matsuda
May 1985, Analytical biochemistry,
S Nakanishi, and H Kase, and Y Matsuda
February 1986, Neurochemical research,
Copied contents to your clipboard!