The effects of posterior cortical lesions on responses to visual threats in the Mongolian gerbil (Meriones unguiculatus). 1991

C G Ellard, and D G Chapman
Department of Psychology, Mount Allison University, Sackville, New Brunswick, Canada.

Mongolian gerbils received aspiration lesions of either primary visual cortex (PVC), medial extrastriate visual cortex, retrosplenial cortex (RSC), or sham operations. The responses of gerbils to the presentation of an overhead visual stimulus were recorded in an open field. In all groups, presentation of the stimulus produced an increase in rearing. This suggests that the stimulus was detected by all animals. Gerbils with RSC or PVC lesions showed reduced levels of response to the stimulus. We suggest that some of the observed deficits can be explained as failures to produce responses to threat that are appropriate to the context in which the the threat was presented.

UI MeSH Term Description Entries
D010465 Perception The process by which the nature and meaning of sensory stimuli are recognized and interpreted. Sensory Processing,Processing, Sensory
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004924 Escape Reaction Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy. Flight Reaction,Escape Reactions,Flight Reactions,Reaction, Escape,Reaction, Flight,Reactions, Escape,Reactions, Flight
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

C G Ellard, and D G Chapman
December 1975, Laboratory animal science,
C G Ellard, and D G Chapman
July 1984, Behavioural brain research,
C G Ellard, and D G Chapman
April 1968, Laboratory animal care,
C G Ellard, and D G Chapman
September 1993, Journal of comparative psychology (Washington, D.C. : 1983),
C G Ellard, and D G Chapman
January 1979, Journal fur Hirnforschung,
C G Ellard, and D G Chapman
April 1973, Journal of reproduction and fertility,
C G Ellard, and D G Chapman
June 1978, Veterinary medicine, small animal clinician : VM, SAC,
C G Ellard, and D G Chapman
June 1983, Experimental eye research,
C G Ellard, and D G Chapman
September 1974, The American journal of anatomy,
Copied contents to your clipboard!