Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain. 2007

Peter B Noble, and Peter K McFawn, and Howard W Mitchell
Physiology, School of Biomedical, Biomolecular, and Chemical Sciences, Univ. of Western Australia, 35 Stirling Hwy., Crawley, Perth, Western Australia, 6009, Australia. Peter.Noble@uwa.edu.au

In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simulated tidal volume oscillations with and without DI and to determine the roles of airway stiffness and ASM strain on responsiveness. To simulate airway dilations during breathing, we cycled the luminal volume of liquid-filled segments. Volume oscillations (15 cycles/min) were set so that, in relaxed airways, they produced a transmural pressure increase of approximately 5-10 cmH(2)O for tidal maneuvers and approximately 5-30 cmH(2)O for DIs. ACh dose-response curves (10(-7)-3 x 10(-3) M) were constructed under static and dynamic conditions, and maximal response and sensitivity were determined. Airway stiffness was measured from tidal trough-to-peak pressure and volume cycles. ASM strain produced by DI was estimated from luminal volume, airway length, and inner wall area. DIs produced substantial ( approximately 40-50%) dilation, reflected by a decrease in maximal response (P < 0.001) and sensitivity (P < 0.05). However, the magnitude of bronchodilation decreased significantly in proportion to airway stiffening caused by contractile activation and an associated reduction in ASM strain. Tidal oscillations, in comparison, had little effect on responsiveness. We conclude that DI regulates airway responsiveness at the airway level, but this is limited by airway stiffness due to reduced ASM strain.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001239 Inhalation The act of BREATHING in. Inhaling,Inspiration, Respiratory,Respiratory Inspiration
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Peter B Noble, and Peter K McFawn, and Howard W Mitchell
December 2014, Journal of applied physiology (Bethesda, Md. : 1985),
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
January 2019, Respiratory physiology & neurobiology,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
December 2019, Journal of applied physiology (Bethesda, Md. : 1985),
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
October 1991, The American review of respiratory disease,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
October 1990, Nihon Kyobu Shikkan Gakkai zasshi,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
November 2010, Journal of applied physiology (Bethesda, Md. : 1985),
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
February 2019, Journal of engineering and science in medical diagnostics and therapy,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
August 2011, Pulmonary pharmacology & therapeutics,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
March 2010, American journal of physiology. Lung cellular and molecular physiology,
Peter B Noble, and Peter K McFawn, and Howard W Mitchell
September 2003, Respiratory physiology & neurobiology,
Copied contents to your clipboard!