Cyto- and chemoarchitecture of the cerebellum of the short-beaked echidna (Tachyglossus aculeatus). 2007

K W S Ashwell, and G Paxinos, and C R R Watson
Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, Australia. k.ashwell@unsw.edu.au

The monotremes (echidnas and platypus) have been claimed by some authors to show 'avian' or 'reptilian' features in the gross morphology and microscopic anatomy of the cerebellum. We have used Nissl staining in conjunction with enzyme histochemistry to acetylcholinesterase and cytochrome oxidase and immunohistochemistry to non-phosphorylated neurofilament protein (SMI-32 antibody), calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase to examine the cyto- and chemoarchitecture of the cerebellar cortex and deep cerebellar nuclei in the short-beaked echidna. Immunoreactivity for non-phosphorylated neurofilament (SMI-32 antibody) was found in the deep cerebellar nuclei and in Purkinje cells of most regions except the nodule. Purkinje cells identified with SMI-32 immunoreactivity were clearly mammalian in morphology. Parvalbumin and calbindin immunoreactivity was found in Purkinje cells with some regional variation in staining intensity and in Purkinje cell axons traversing cerebellar white matter or terminating on Lugaro cells. Calbindin immunoreactivity was also present in inferior olivary complex neurons. Calretinin immunoreactivity was found in pontocerebellar fibers and small cells in the deep granule cell layer of the ansiform lobule. We found that, although the deep cerebellar nuclei were much less clearly demarcated than in the rodent cerebellum, it was possible to distinguish medial, interposed and lateral nuclear components in the echidna. As far as we can determine from our techniques, the cerebellum of the echidna shows all the gross and cytological features familiar from the cerebellum of therian mammals.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004442 Tachyglossidae An oviparous burrowing mammal of the order Monotremata native to AUSTRALIA, TASMANIA, and NEW GUINEA. It has hair mingled with spines on the upper part of the body and is adapted for feeding on ants. Echidna,Spiny Ant-Eater,Spiny Anteater,Tachyglossus,Zaglossus,Ant-Eater, Spiny,Ant-Eaters, Spiny,Anteaters, Spiny,Echidnas,Spiny Ant Eater,Spiny Ant-Eaters
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament
D064026 Calbindins Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D. Calbindin
D064030 S100 Calcium Binding Protein G A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D. Calbindin 3,Calbindin D9K,Calbindin-D9K,Calcium Binding Protein, Vitamin D Dependent,Calcium-Binding Protein, Vitamin D-Dependent,Cholecalcin,IMCal Protein,Intestinal Membrane Calcium-Binding Protein,Vitamin D-Dependent Calcium-Binding Protein,Intestinal Membrane Calcium Binding Protein,Vitamin D Dependent Calcium Binding Protein

Related Publications

K W S Ashwell, and G Paxinos, and C R R Watson
September 2008, Somatosensory & motor research,
K W S Ashwell, and G Paxinos, and C R R Watson
May 2008, Australian veterinary journal,
K W S Ashwell, and G Paxinos, and C R R Watson
July 2009, Australian veterinary journal,
K W S Ashwell, and G Paxinos, and C R R Watson
January 2012, Brain, behavior and evolution,
K W S Ashwell, and G Paxinos, and C R R Watson
January 2021, Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation,
K W S Ashwell, and G Paxinos, and C R R Watson
September 2018, Australian veterinary journal,
K W S Ashwell, and G Paxinos, and C R R Watson
October 2021, Australian veterinary journal,
K W S Ashwell, and G Paxinos, and C R R Watson
December 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
K W S Ashwell, and G Paxinos, and C R R Watson
January 2016, Journal of the experimental analysis of behavior,
K W S Ashwell, and G Paxinos, and C R R Watson
June 2002, Animal cognition,
Copied contents to your clipboard!