Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. 2007

J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
División de Neurociencias, Universidad Pablo de Olavide, Seville, Spain.

Kainate receptors (KARs) effect depression of glutamate release at hippocampal mossy fiber-CA3 (MF-CA3) synapses by a metabotropic action involving adenylyl cyclase (AC) inhibition, cAMP reduction, and diminished protein kinase A (PKA) activation. Using hippocampal slices, we show here that KAR activation interferes with the depression of glutamate release produced by Group II metabotropic glutamate receptor stimulation and low frequency stimulation (LFS)-induced long-term depression (LTD), also expressed through presynaptic AC/cAMP/PKA at MF-CA3 synapses. The mutual occlusion of depression mediated by presynaptic KARs, Group II mGluR and LFS-induced LTD suggests their mechanistic convergence at the MF-CA3 synapse and thus invokes KARs in synaptic plasticity manifest in LTD.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017661 Receptors, Presynaptic Neurotransmitter receptors located on or near presynaptic terminals or varicosities. Presynaptic receptors which bind transmitter molecules released by the terminal itself are termed AUTORECEPTORS. Presynaptic Receptors,Presynaptic Receptor,Receptor, Presynaptic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases

Related Publications

J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
August 1996, Science (New York, N.Y.),
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
March 2000, The Journal of physiology,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
May 1999, The European journal of neuroscience,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
September 2001, Proceedings of the National Academy of Sciences of the United States of America,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
March 2001, Science (New York, N.Y.),
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
April 2021, Scientific reports,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
November 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J V Negrete-Díaz, and T S Sihra, and J M Delgado-García, and A Rodríguez-Moreno
September 2011, Neuron,
Copied contents to your clipboard!